Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Oct 14 2017 10:51:19
%S 102247563,8624400680,408962920820,14395560938040,419691762832900,
%T 10733397639516016,249286917950186760,5378992003398157520,
%U 109550762660946047540,2130231901794898870880,39890088439337327537706,724087830188007677450600,12806950694169650253597100
%N Number of compositions of n where each part i is marked with a word of length i over a denary alphabet whose letters appear in alphabetical order and all ten letters occur at least once in the composition.
%H Alois P. Heinz, <a href="/A293587/b293587.txt">Table of n, a(n) for n = 10..851</a>
%F a(n) = 110*a(n-1) - 5610*a(n-2) + 176880*a(n-3) - 3881988*a(n-4) + 63363036*a(n-5) - 803190784*a(n-6) + 8158333238*a(n-7) - 68032529026*a(n-8) + 474993355914*a(n-9) - 2822235496730*a(n - 10) + 14467586756760*a(n - 11) - 64737065451880*a(n - 12) + 255368816478596*a(n - 13) - 895592944790280*a(n - 14) + 2812645592347868*a(n - 15) - 7959012851067608*a(n - 16) + 20400177554223892*a(n - 17) - 47577190249945824*a(n - 18) + 101351234640525316*a(n - 19) - 197858458654518512*a(n - 20) + 354970398396888856*a(n - 21) - 586639546887371480*a(n - 22) + 894863479752319328*a(n - 23) - 1262018115661289704*a(n - 24) + 1647713711756348440*a(n - 25) - 1993736153901444400*a(n - 26) + 2237552288722011272*a(n - 27) - 2330463862262027344*a(n - 28) + 2253297285769248336*a(n - 29) - 2022772844930193632*a(n - 30) + 1685689150486091056*a(n - 31) - 1303653883506384160*a(n - 32) + 935094847660607024*a(n - 33) - 621597594038060528*a(n - 34) + 382531198553819968*a(n - 35) - 217648454420883104*a(n - 36) + 114307777283928640*a(n - 37) - 55307833610580384*a(n - 38) + 24597346495674400*a(n - 39) - 10027630547676256*a(n - 40) + 3735272463460864*a(n - 41) - 1266527133905728*a(n - 42) + 389159192308096*a(n - 43) - 107781232918912*a(n - 44) + 26735152254272*a(n - 45) - 5893548603520*a(n - 46) + 1143628773376*a(n - 47) - 193030560256*a(n - 48) + 27910311552*a(n - 49) - 3387984128*a(n - 50) + 335821568*a(n - 51) - 26104576*a(n - 52) + 1492480*a(n - 53) - 55808*a(n - 54) + 1024*a(n - 55). - _Vaclav Kotesovec_, Oct 14 2017
%p b:= proc(n, k) option remember; `if`(n=0, 1,
%p add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n))
%p end:
%p a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(10):
%p seq(a(n), n=10..30);
%Y Column k=10 of A261781.
%K nonn
%O 10,1
%A _Alois P. Heinz_, Oct 12 2017