login
Number of compositions of n where each part i is marked with a word of length i over a denary alphabet whose letters appear in alphabetical order and all ten letters occur at least once in the composition.
2

%I #6 Oct 14 2017 10:51:19

%S 102247563,8624400680,408962920820,14395560938040,419691762832900,

%T 10733397639516016,249286917950186760,5378992003398157520,

%U 109550762660946047540,2130231901794898870880,39890088439337327537706,724087830188007677450600,12806950694169650253597100

%N Number of compositions of n where each part i is marked with a word of length i over a denary alphabet whose letters appear in alphabetical order and all ten letters occur at least once in the composition.

%H Alois P. Heinz, <a href="/A293587/b293587.txt">Table of n, a(n) for n = 10..851</a>

%F a(n) = 110*a(n-1) - 5610*a(n-2) + 176880*a(n-3) - 3881988*a(n-4) + 63363036*a(n-5) - 803190784*a(n-6) + 8158333238*a(n-7) - 68032529026*a(n-8) + 474993355914*a(n-9) - 2822235496730*a(n - 10) + 14467586756760*a(n - 11) - 64737065451880*a(n - 12) + 255368816478596*a(n - 13) - 895592944790280*a(n - 14) + 2812645592347868*a(n - 15) - 7959012851067608*a(n - 16) + 20400177554223892*a(n - 17) - 47577190249945824*a(n - 18) + 101351234640525316*a(n - 19) - 197858458654518512*a(n - 20) + 354970398396888856*a(n - 21) - 586639546887371480*a(n - 22) + 894863479752319328*a(n - 23) - 1262018115661289704*a(n - 24) + 1647713711756348440*a(n - 25) - 1993736153901444400*a(n - 26) + 2237552288722011272*a(n - 27) - 2330463862262027344*a(n - 28) + 2253297285769248336*a(n - 29) - 2022772844930193632*a(n - 30) + 1685689150486091056*a(n - 31) - 1303653883506384160*a(n - 32) + 935094847660607024*a(n - 33) - 621597594038060528*a(n - 34) + 382531198553819968*a(n - 35) - 217648454420883104*a(n - 36) + 114307777283928640*a(n - 37) - 55307833610580384*a(n - 38) + 24597346495674400*a(n - 39) - 10027630547676256*a(n - 40) + 3735272463460864*a(n - 41) - 1266527133905728*a(n - 42) + 389159192308096*a(n - 43) - 107781232918912*a(n - 44) + 26735152254272*a(n - 45) - 5893548603520*a(n - 46) + 1143628773376*a(n - 47) - 193030560256*a(n - 48) + 27910311552*a(n - 49) - 3387984128*a(n - 50) + 335821568*a(n - 51) - 26104576*a(n - 52) + 1492480*a(n - 53) - 55808*a(n - 54) + 1024*a(n - 55). - _Vaclav Kotesovec_, Oct 14 2017

%p b:= proc(n, k) option remember; `if`(n=0, 1,

%p add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n))

%p end:

%p a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(10):

%p seq(a(n), n=10..30);

%Y Column k=10 of A261781.

%K nonn

%O 10,1

%A _Alois P. Heinz_, Oct 12 2017