The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293268 G.f.: Re(1/(1 + i*x/(1 + i*x^2/(1 + i*x^3/(1 + i*x^4/(1 + i*x^5/(1 + ...))))))), a continued fraction, where i is the imaginary unit. 1
 1, 0, -1, -1, 1, 3, 2, -2, -7, -6, 4, 16, 14, -9, -37, -33, 20, 87, 82, -41, -201, -198, 85, 465, 475, -178, -1084, -1150, 353, 2511, 2767, -684, -5810, -6633, 1287, 13463, 15923, -2222, -31119, -38130, 3356, 71838, 91138, -3595, -165763, -217705, -1761, 381895, 519284, 27984, -878685 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS Table of n, a(n) for n=0..50. Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction FORMULA G.f.: Re( (Sum_{k>=0} i^k*x^(k*(k+1))/Product(m=1..k} (1 - x^m)) / (Sum_{k>=0} i^k*x^(k^2)/Product(m=1..k} (1 - x^m)) ), where i is the imaginary unit. EXAMPLE G.f. A(x) = Sum_{n>=0} (a(n) + i*A293269(n))*x^n = 1 - i*x - x^2 - (1 - i)*x^3 + (1 + 2*i)*x^4 + 3*x^5 + (2 - 3*i)*x^6 - (2 + 5*i)*x^7 - (7 + i)*x^8 - ... MATHEMATICA nmax = 50; Re[CoefficientList[Series[1/(1 + ContinuedFractionK[I x^k, 1, {k, 1, nmax}]), {x, 0, nmax}], x]] nmax = 50; Re[CoefficientList[Series[Sum[I^k x^(k (k + 1)) / Product[1 - x^m, {m, 1, k}], {k, 0, nmax}] / Sum[I^k x^(k^2) / Product[1 - x^m, {m, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]] CROSSREFS Cf. A007325, A278399, A292136, A293269. Sequence in context: A091264 A021760 A092419 * A020835 A244639 A352673 Adjacent sequences: A293265 A293266 A293267 * A293269 A293270 A293271 KEYWORD sign AUTHOR Ilya Gutkovskiy, Oct 04 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 05:33 EDT 2024. Contains 372921 sequences. (Running on oeis4.)