login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293268
G.f.: Re(1/(1 + i*x/(1 + i*x^2/(1 + i*x^3/(1 + i*x^4/(1 + i*x^5/(1 + ...))))))), a continued fraction, where i is the imaginary unit.
1
1, 0, -1, -1, 1, 3, 2, -2, -7, -6, 4, 16, 14, -9, -37, -33, 20, 87, 82, -41, -201, -198, 85, 465, 475, -178, -1084, -1150, 353, 2511, 2767, -684, -5810, -6633, 1287, 13463, 15923, -2222, -31119, -38130, 3356, 71838, 91138, -3595, -165763, -217705, -1761, 381895, 519284, 27984, -878685
OFFSET
0,6
LINKS
FORMULA
G.f.: Re( (Sum_{k>=0} i^k*x^(k*(k+1))/Product(m=1..k} (1 - x^m)) / (Sum_{k>=0} i^k*x^(k^2)/Product(m=1..k} (1 - x^m)) ), where i is the imaginary unit.
EXAMPLE
G.f. A(x) = Sum_{n>=0} (a(n) + i*A293269(n))*x^n = 1 - i*x - x^2 - (1 - i)*x^3 + (1 + 2*i)*x^4 + 3*x^5 + (2 - 3*i)*x^6 - (2 + 5*i)*x^7 - (7 + i)*x^8 - ...
MATHEMATICA
nmax = 50; Re[CoefficientList[Series[1/(1 + ContinuedFractionK[I x^k, 1, {k, 1, nmax}]), {x, 0, nmax}], x]]
nmax = 50; Re[CoefficientList[Series[Sum[I^k x^(k (k + 1)) / Product[1 - x^m, {m, 1, k}], {k, 0, nmax}] / Sum[I^k x^(k^2) / Product[1 - x^m, {m, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Oct 04 2017
STATUS
approved