The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293268 G.f.: Re(1/(1 + i*x/(1 + i*x^2/(1 + i*x^3/(1 + i*x^4/(1 + i*x^5/(1 + ...))))))), a continued fraction, where i is the imaginary unit. 1
1, 0, -1, -1, 1, 3, 2, -2, -7, -6, 4, 16, 14, -9, -37, -33, 20, 87, 82, -41, -201, -198, 85, 465, 475, -178, -1084, -1150, 353, 2511, 2767, -684, -5810, -6633, 1287, 13463, 15923, -2222, -31119, -38130, 3356, 71838, 91138, -3595, -165763, -217705, -1761, 381895, 519284, 27984, -878685 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
LINKS
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
FORMULA
G.f.: Re( (Sum_{k>=0} i^k*x^(k*(k+1))/Product(m=1..k} (1 - x^m)) / (Sum_{k>=0} i^k*x^(k^2)/Product(m=1..k} (1 - x^m)) ), where i is the imaginary unit.
EXAMPLE
G.f. A(x) = Sum_{n>=0} (a(n) + i*A293269(n))*x^n = 1 - i*x - x^2 - (1 - i)*x^3 + (1 + 2*i)*x^4 + 3*x^5 + (2 - 3*i)*x^6 - (2 + 5*i)*x^7 - (7 + i)*x^8 - ...
MATHEMATICA
nmax = 50; Re[CoefficientList[Series[1/(1 + ContinuedFractionK[I x^k, 1, {k, 1, nmax}]), {x, 0, nmax}], x]]
nmax = 50; Re[CoefficientList[Series[Sum[I^k x^(k (k + 1)) / Product[1 - x^m, {m, 1, k}], {k, 0, nmax}] / Sum[I^k x^(k^2) / Product[1 - x^m, {m, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]]
CROSSREFS
Sequence in context: A091264 A021760 A092419 * A020835 A244639 A352673
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Oct 04 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 05:33 EDT 2024. Contains 372921 sequences. (Running on oeis4.)