login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293025
E.g.f.: exp(exp(x) - Sum_{i=0..5} x^i/i!).
2
1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 463, 1717, 4720, 11441, 25884, 56135, 2977313, 23524737, 125212889, 552517341, 2183244857, 8025931950, 124257251233, 1468856487536, 12433365625566, 85767520652726, 518324768774506, 2858925345803536, 26181976719735061
OFFSET
0,13
COMMENTS
a(n) is the number of set partitions of [n] into blocks of size > 5.
LINKS
FORMULA
E.g.f.: Product_{i>5} exp(x^i/i!).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1), j=6..n))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Sep 28 2017
MATHEMATICA
m = 31;
Exp[Exp[x] - Sum[x^i/i!, {i, 0, 5}]] + O[x]^m // CoefficientList[#, x]& // (# Range[0, m-1]!)& (* Jean-François Alcover, Mar 08 2021 *)
PROG
(PARI) my(x='x+O('x^66)); Vec(serlaplace(exp(exp(x)-1-x-x^2/2-x^3/6-x^4/24-x^5/120)))
CROSSREFS
Column k=5 of A293024.
Sequence in context: A343542 A142282 A270760 * A108834 A233310 A220716
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 28 2017
STATUS
approved