login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292906
Number of dihedral Carlitz compositions of n.
3
1, 1, 2, 2, 3, 5, 6, 9, 14, 20, 29, 48, 69, 110, 175, 278, 441, 725, 1168, 1928, 3170, 5253, 8710, 14563, 24308, 40798, 68520, 115433, 194611, 328938, 556336, 942659, 1598539, 2714379, 4612681, 7847082, 13358850, 22762311, 38810771, 66223599, 113067441, 193172332
OFFSET
1,3
COMMENTS
A cyclic Carlitz composition is a composition of length greater than one where adjacent parts, including the first and the last ones, are distinct. A composition of length one is also considered cyclic and Carlitz. Assume two cyclic Carlitz compositions are considered equivalent iff one can be obtained from the other by a rotation or reversal of order. Each equivalence class obtained is called a dihedral Carlitz composition of n.
LINKS
P. Hadjicostas, Cyclic, dihedral and symmetrical Carlitz compositions of a positive integer, Journal of Integer Sequences, 20 (2017), Article 17.8.5.
FORMULA
a(n) = (A106369(n) + A292200(n))/2.
a(n) = (2*A106369(n) + A291941(n) + 1)/4.
G.f.: (g.f. of A106369 + g.f. of A292200)/2.
EXAMPLE
a(6) = 5 because n = 6 has the following dihedral Carlitz compositions: 6, 1+5, 2+4, 1+2+3, 1+2+1+2. (For example, the equivalence class for the dihedral Carlitz composition 1+2+3 is {(1,2,3),(2,3,1), (3,1,2), (3,2,1),(2,1,3),(1,3,2)}.)
CROSSREFS
KEYWORD
nonn
AUTHOR
Petros Hadjicostas, Oct 10 2017
STATUS
approved