login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. A(x) satisfies: A(x) = Integral cosh(A(x)) / cos(A(x)) dx.
1

%I #7 Sep 23 2017 21:40:40

%S 1,2,28,1048,75792,8997152,1589002688,390961266048,127846741426432,

%T 53632884600381952,28079728446200552448,17946985636126706997248,

%U 13752407157731907070595072,12445413772239663599454461952,13132326759927928089640745156608,15981710147225745975653754234830848,22219455702861159981173310810673446912,34999777375499159602747762386616587517952

%N E.g.f. A(x) satisfies: A(x) = Integral cosh(A(x)) / cos(A(x)) dx.

%H Paul D. Hanna, <a href="/A292806/b292806.txt">Table of n, a(n) for n = 1..150</a>

%F E.g.f.: Series_Reversion( Integral cos(x)/cosh(x) dx ).

%e E.g.f.: A(x) = x + 2*x^3/3! + 28*x^5/5! + 1048*x^7/7! + 75792*x^9/9! + 8997152*x^11/11! + 1589002688*x^13/13! + 390961266048*x^15/15! + 127846741426432*x^17/17! + 53632884600381952*x^19/19! +...

%e such that A'(x) = cosh(A(x)) / cos(A(x)).

%e RELATED SERIES.

%e Let B(x) be the series reversion of e.g.f. A(x), then

%e B(x) = x - 2*x^3/3! + 12*x^5/5! - 152*x^7/7! + 3472*x^9/9! - 126752*x^11/11! + 6781632*x^13/13! - 500231552*x^15/15! +...+ A000795(n-1)*x^(2*n-1)!/(2*n-1)! +...

%e then G'(x) = cos(x)/cosh(x).

%e Let G(x) be defined by G(G(x)) = A(x), then

%e G(x) = x + x^3/3! + 9*x^5/5! + 237*x^7/7! + 12385*x^9/9! + 1067225*x^11/11! + 136228105*x^13/13! + 24056468229*x^15/15! + 5614204466945*x^17/17! + 1677288189454257*x^19/19! + 626137638928559689*x^21/21! + 285873599602408829469*x^23/23! + 156375718123032150293473*x^25/25! +...

%o (PARI) {a(n) = my(A=x, Ox=x*O(x^(2*n))); for(i=0, n, A = intformal( cosh(A +Ox) / cos(A +Ox))); (2*n-1)!*polcoeff( G = A, 2*n-1)}

%o for(n=1,30,print1(a(n),", "))

%Y Cf. A292396, A000795.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Sep 23 2017