login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292806
E.g.f. A(x) satisfies: A(x) = Integral cosh(A(x)) / cos(A(x)) dx.
1
1, 2, 28, 1048, 75792, 8997152, 1589002688, 390961266048, 127846741426432, 53632884600381952, 28079728446200552448, 17946985636126706997248, 13752407157731907070595072, 12445413772239663599454461952, 13132326759927928089640745156608, 15981710147225745975653754234830848, 22219455702861159981173310810673446912, 34999777375499159602747762386616587517952
OFFSET
1,2
LINKS
FORMULA
E.g.f.: Series_Reversion( Integral cos(x)/cosh(x) dx ).
EXAMPLE
E.g.f.: A(x) = x + 2*x^3/3! + 28*x^5/5! + 1048*x^7/7! + 75792*x^9/9! + 8997152*x^11/11! + 1589002688*x^13/13! + 390961266048*x^15/15! + 127846741426432*x^17/17! + 53632884600381952*x^19/19! +...
such that A'(x) = cosh(A(x)) / cos(A(x)).
RELATED SERIES.
Let B(x) be the series reversion of e.g.f. A(x), then
B(x) = x - 2*x^3/3! + 12*x^5/5! - 152*x^7/7! + 3472*x^9/9! - 126752*x^11/11! + 6781632*x^13/13! - 500231552*x^15/15! +...+ A000795(n-1)*x^(2*n-1)!/(2*n-1)! +...
then G'(x) = cos(x)/cosh(x).
Let G(x) be defined by G(G(x)) = A(x), then
G(x) = x + x^3/3! + 9*x^5/5! + 237*x^7/7! + 12385*x^9/9! + 1067225*x^11/11! + 136228105*x^13/13! + 24056468229*x^15/15! + 5614204466945*x^17/17! + 1677288189454257*x^19/19! + 626137638928559689*x^21/21! + 285873599602408829469*x^23/23! + 156375718123032150293473*x^25/25! +...
PROG
(PARI) {a(n) = my(A=x, Ox=x*O(x^(2*n))); for(i=0, n, A = intformal( cosh(A +Ox) / cos(A +Ox))); (2*n-1)!*polcoeff( G = A, 2*n-1)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A009403 A026944 A296464 * A113633 A186491 A300459
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 23 2017
STATUS
approved