OFFSET
1,1
COMMENTS
Numbers m such that sigma(m) == 0 mod 4 and phi(m) == 2 mod 4.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..13839 (Terms up to 200000)
FORMULA
As 22 = 2 * 11^1, which is of the form 2 * p^k with p = 11 = 2 * 4 + 3 == 3 mod 4 and k = 1 which is odd, 22 is a term. - David A. Corneth, Oct 02 2017
MATHEMATICA
Do[If[Mod[DivisorSigma[1, n], 4]==0 && Mod[EulerPhi[n], 4]==2, Print[n]], {n, 1, 10^3}] (* Vincenzo Librandi, Oct 02 2017 *)
PROG
(PARI) isok(m) = ((sigma(m) % 4) == 0) && ((eulerphi(m) % 4) == 2); \\ Michel Marcus, Oct 02 2017
(PARI) upto(n) = {my(l=List()); forprime(p=3, n, if(p%4==3, forstep(e=1, logint(n, p), 2, listput(l, p^e); if(2*p^e <= n, listput(l, 2*p^e))))); listsort(l); l} \\ David A. Corneth, Oct 02 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 26 2017
STATUS
approved