login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292534 p-INVERT of the squares (A000290), where p(S) = 1 + S - S^2. 1
-1, -2, 4, 21, 30, 11, 80, 622, 2055, 4584, 10711, 34354, 115480, 341213, 934750, 2640483, 7874188, 23564242, 68738591, 198108496, 575654335, 1688669686, 4951141372, 14443935957, 42064267934, 122731975243, 358682023576, 1047906654118, 3058580566407 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

See A292479 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5, -12, 22, -16, 7, -1)

FORMULA

G.f.: ((1 + x) (-1 + 4 x - 2 x^2 + x^3))/(1 - 5 x + 12 x^2 - 22 x^3 + 16 x^4 - 7 x^5 + x^6).

a(n) = 5*a(n-1) - 12*a(n-2) + 22*a(n-3) - 16*a(n-4) + 7*a(n-5) - a(n-6) for n >= 7.

MATHEMATICA

z = 60; s = x (x + 1)/(1 - x)^3; p = 1 + s - s^2;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)

Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292534 *)

CROSSREFS

Cf. A000290, A292479.

Sequence in context: A099179 A102049 A058522 * A122736 A296276 A092458

Adjacent sequences:  A292531 A292532 A292533 * A292535 A292536 A292537

KEYWORD

easy,sign

AUTHOR

Clark Kimberling, Oct 04 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 15:16 EDT 2020. Contains 333107 sequences. (Running on oeis4.)