login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292359
E.g.f.: Product_{k>=1} (1 - x^k/k).
5
1, -1, -1, 1, 2, 26, -6, 414, -624, -288, -20880, 164880, -9756000, 43529760, -324404640, -4052492640, -48521410560, 1168445053440, -26858914467840, 341240066334720, -5752671815116800, 49267037136844800, -769468911734476800, 39863275492626432000
OFFSET
0,5
LINKS
FORMULA
Conjecture: a(n) ~ -(-1)^n * n! / n^2. - Vaclav Kotesovec, Sep 15 2017
E.g.f.: exp(-Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*j^k)). - Ilya Gutkovskiy, May 27 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[(1 - x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 15 2017 *)
PROG
(PARI) {a(n) = n!*polcoeff(prod(k=1, n, 1-x^k/k+x*O(x^n)), n)}
CROSSREFS
Sequence in context: A323589 A141415 A056948 * A035420 A241202 A278479
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 14 2017
STATUS
approved