login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292282
a(n) = 2*(n-1)^3*n^2*(n+1).
1
0, 24, 576, 4320, 19200, 63000, 169344, 395136, 829440, 1603800, 2904000, 4983264, 8176896, 12918360, 19756800, 29376000, 42614784, 60488856, 84214080, 115231200, 155232000, 206186904, 270374016, 350409600, 449280000, 570375000, 717522624, 895025376, 1107697920
OFFSET
1,2
COMMENTS
Molecular topological index of the n X n rook complement graph for n != 2.
LINKS
Eric Weisstein's World of Mathematics, Molecular Topological Index.
Eric Weisstein's World of Mathematics, Rook Complement Graph.
FORMULA
a(n) = 2*(n-1)^3*n^2*(n+1).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: -24*x^2*(1 + 17*x + 33*x^2 + 9*x^3)/(-1 + x)^7.
From Amiram Eldar, Apr 16 2022: (Start)
Sum_{n>=2} 1/a(n) = 51/32 - 3*Pi^2/16 + zeta(3)/4.
Sum_{n>=2} (-1)^n/a(n) = 2*log(2) + 3*zeta(3)/16 - 47/32 - Pi^2/96. (End)
MATHEMATICA
Table[2 (-1 + n)^3 n^2 (1 + n), {n, 20}]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 24, 576, 4320, 19200, 63000, 169344}, 30]
CoefficientList[Series[-24 x (1 + 17 x + 33 x^2 + 9 x^3)/(-1 + x)^7, {x, 0, 20}], x]
PROG
(PARI) a(n)=2*(n-1)^3*n^2*(n+1) \\ Charles R Greathouse IV, Sep 14 2017
(Magma) [2*(n-1)^3*n^2*(n+1): n in [1..30]]; // G. C. Greubel, Dec 12 2017
CROSSREFS
Sequence in context: A059061 A359751 A206991 * A206933 A206868 A181221
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Sep 14 2017
STATUS
approved