OFFSET
1,2
COMMENTS
Molecular topological index of the n X n rook complement graph for n != 2.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Eric Weisstein's World of Mathematics, Molecular Topological Index.
Eric Weisstein's World of Mathematics, Rook Complement Graph.
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(n) = 2*(n-1)^3*n^2*(n+1).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: -24*x^2*(1 + 17*x + 33*x^2 + 9*x^3)/(-1 + x)^7.
From Amiram Eldar, Apr 16 2022: (Start)
Sum_{n>=2} 1/a(n) = 51/32 - 3*Pi^2/16 + zeta(3)/4.
Sum_{n>=2} (-1)^n/a(n) = 2*log(2) + 3*zeta(3)/16 - 47/32 - Pi^2/96. (End)
MATHEMATICA
Table[2 (-1 + n)^3 n^2 (1 + n), {n, 20}]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 24, 576, 4320, 19200, 63000, 169344}, 30]
CoefficientList[Series[-24 x (1 + 17 x + 33 x^2 + 9 x^3)/(-1 + x)^7, {x, 0, 20}], x]
PROG
(PARI) a(n)=2*(n-1)^3*n^2*(n+1) \\ Charles R Greathouse IV, Sep 14 2017
(Magma) [2*(n-1)^3*n^2*(n+1): n in [1..30]]; // G. C. Greubel, Dec 12 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Sep 14 2017
STATUS
approved