login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292273
For odd n: a(n) = 0, and for even n: a(n) = -mu(n), where mu is Moebius function (A008683).
2
0, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
OFFSET
1
COMMENTS
Sum of Möbius function values computed for terms of 3x+1 trajectory started at n, but excluding mu(n) itself. See Marc LeBrun's comment in A087003.
FORMULA
a(n) = (A000035(n)-1) * A008683(n).
a(n) = A087003(n) - A008683(n).
Conjecture: a(n) = Re(A008683(n)*(i^n)). - Mats Granvik, Jul 06 2024
PROG
(PARI)
A292273(n) = if(n%2, 0, -moebius(n)); \\ After the definition.
\\ Implementation following the Collatz-interpretation:
A006370(n) = if(n%2, 3*n+1, n/2); \\ This function from Michael B. Porter, May 29 2010
A087003(n) = { my(s=1); while(n>1, s += moebius(n); n = A006370(n)); (s); };
A292273(n) = (A087003(n)-moebius(n));
\\ Or more directly as:
A292273(n) = { my(s=0); while(n>1, n = A006370(n); s += moebius(n)); (s); };
(Scheme) (define (A292273 n) (* (- (A000035 n) 1) (A008683 n)))
CROSSREFS
Cf. A000035, A006370, A008683, A014682, A039956 (positions of nonzero terms), A087003.
Sequence in context: A324539 A324964 A285957 * A324772 A285949 A285530
KEYWORD
sign,easy
AUTHOR
Antti Karttunen, Sep 14 2017
STATUS
approved