login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291848
G.f.: Sum_{n>=0} x^n * Product_{k=0..n-1} (1 + (2*k+1)*x + x^2).
4
1, 1, 2, 6, 15, 47, 150, 522, 1903, 7319, 29396, 122988, 534141, 2400061, 11136516, 53220492, 261576725, 1319629445, 6825232486, 36137198722, 195664517227, 1082169511883, 6108213101658, 35153836421302, 206126910439763, 1230477025952427, 7473067121404104, 46146114390128888, 289554642297817561, 1845220293901278041, 11936266843924805064
OFFSET
0,3
COMMENTS
Antidiagonal sums of irregular triangle A291845, which has row sums equal to the odd double factorials A001147.
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 15*x^4 + 47*x^5 + 150*x^6 + 522*x^7 + 1903*x^8 + 7319*x^9 + 29396*x^10 + 122988*x^11 + 534141*x^12 +...
which equals the series:
A(x) = 1 + x*(1+x+x^2) + x^2*(1+x+x^2)*(1+3*x+x^2) + x^3*(1+x+x^2)*(1+3*x+x^2)*(1+5*x+x^2) + x^4*(1+x+x^2)*(1+3*x+x^2)*(1+5*x+x^2)*(1+7*x+x^2) +...
MATHEMATICA
nmax = 30; CoefficientList[Series[Sum[2^n*x^(2*n)*Pochhammer[(1 + x + x^2)/(2*x), n], {n, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 13 2017 *)
PROG
(PARI) {a(n)=sum(k=0, n, polcoeff(prod(j=0, n-k-1, 1+(2*j+1)*x+x^2), k))}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*prod(j=0, m-1, 1+(2*j+1)*x+x^2))+x*O(x^n), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A186738 A127383 A237262 * A363207 A196961 A368411
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 03 2017
STATUS
approved