login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291836
Decimal expansion of exponential growth rate of the number of 2-connected planar graphs on n labeled nodes.
5
2, 6, 1, 8, 4, 1, 1, 2, 5, 5, 5, 6, 5, 8, 1, 4, 8, 4, 9, 6, 8, 7, 7, 0, 1, 4, 2, 3, 3, 9, 1, 1, 4, 5, 0, 7, 1, 6, 2, 4, 3, 4, 0, 8, 9, 6, 6, 9, 3, 3, 8, 9, 3, 8, 4, 8, 4, 2, 1, 0, 2, 0, 6, 2, 4, 1, 2, 2, 6, 2, 6, 2, 1, 5, 8, 3, 1, 0, 7, 0
OFFSET
2,1
LINKS
E. A. Bender, Z. Gao and N. C. Wormald, The number of labeled 2-connected planar graphs, Electron. J. Combin., 9 (2002), #R43.
FORMULA
Equals 1/x(A266389), where function t->x(t) is defined in the PARI code.
Constant r where A096331(n) ~ A291835 * n^(-7/2) * r^n * n!.
EXAMPLE
26.18411255565814849687701423391145...
PROG
(PARI)
x(t) = (1+3*t)*(1/t-1)^3/16;
y(t) = {
my(y1 = t^2 * (1-t) * (18 + 36*t + 5*t^2),
y2 = 2 * (3+t) * (1+2*t) * (1+3*t)^2);
(1+2*t)/((1+3*t) * (1-t)) * exp(-y1/y2) - 1;
};
N=80; default(realprecision, N+100); t0=solve(t=.62, .63, y(t)-1);
r=1/x(t0); eval(select(x->(x != "."), Vec(Str(r))[1..-101]))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Gheorghe Coserea, Sep 03 2017
STATUS
approved