login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109530
a(n)= 3*a(n-3) +3*a(n-6) +a(n-9).
1
1, 0, 2, 6, 1, 9, 23, 2, 34, 88, 9, 131, 339, 34, 504, 1304, 131, 1939, 5017, 504, 7460, 19302, 1939, 28701, 74261, 7460, 110422, 285706, 28701, 424829, 1099203, 110422, 1634454, 4228988, 424829, 6288271, 16270279, 1634454, 24193004, 62597004
OFFSET
0,3
COMMENTS
The recurrence shows that these are actually three interleaved sequences with
the same recurrence (and the same characteristic polynomial).
FORMULA
G.f.: (1+2*x^2+3*x^3+x^4+3*x^5+2*x^6-x^7+x^8)/(1-3*x^3-3*x^6-x^9). [Sep 28 2009]
MATHEMATICA
M1 = {{0, 1, 0}, {0, 0, 1}, {1, 1, 1}}; M2 = {{1, 1, 1}, {1, 0, 0}, {0, 1, 0}}; M3 = {{0, 1, 0}, {1, 1, 1}, {1, 0, 0}}; M[n_] = If[Mod[n, 3] == 1, M3, If[Mod[n, 3] == 2, M2, M1]]; v[0] = {0, 1, 1}; v[n_] := v[n] = M[n].v[n - 1] a = Table[v[n][[3]], {n, 0, 100}]
LinearRecurrence[{0, 0, 3, 0, 0, 3, 0, 0, 1}, {1, 0, 2, 6, 1, 9, 23, 2, 34}, 60] (* Harvey P. Dale, Sep 13 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jun 18 2005
EXTENSIONS
Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009
STATUS
approved