login
A291769
Restricted growth sequence transform of A292249; filter combining multiplicative order of 2 mod 2n+1 & prime signature of 2n+1 (A002326 & A278223).
4
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 18, 32, 33, 34, 35, 36, 37, 38, 39, 40, 25, 41, 12, 18, 17, 42, 43, 44, 45, 46, 47, 48, 19, 42, 15, 49, 22, 50, 51, 27, 52, 53, 54, 55, 28, 56, 57, 58, 59, 60, 41, 61, 62, 63, 64, 27, 26, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 60, 42
OFFSET
0,2
COMMENTS
Also restricted growth sequence transform of the odd bisection of A286573.
LINKS
PROG
(PARI)
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
write_to_bfile(start_offset, vec, bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
A002326(n) = if(n<0, 0, znorder(Mod(2, 2*n+1))); \\ This function from Michael Somos, Mar 31 2005
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A292249(n) = (1/2)*(2 + ((A002326(n)+A046523(n+n+1))^2) - A002326(n) - 3*A046523(n+n+1));
write_to_bfile(0, rgs_transform(vector(32769, n, A292249(n-1))), "b291769_upto32768.txt");
CROSSREFS
Cf. A291766, A292267 for related filters.
Sequence in context: A074805 A121761 A056963 * A167129 A348287 A328447
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 02 2017
STATUS
approved