login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291740
p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = (1 - S)(1 - S^2).
2
1, 2, 3, 7, 9, 18, 25, 47, 65, 118, 165, 290, 408, 702, 992, 1677, 2379, 3966, 5643, 9300, 13266, 21654, 30954, 50116, 71770, 115388, 165504, 264475, 379863, 603792, 868267, 1373621, 1977413, 3115222, 4488843, 7045205, 10160427, 15892794, 22937999, 35769390
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.
LINKS
FORMULA
G.f.: -(((1 + x^2) (-1 - x + x^2 - x^3 + 2 x^4 + x^6))/((-1 + x + x^3)^2 (1 + x + x^3))).
a(n) = a(n-1) + a(n-2) + 2*a(n-4) - 3*a(n-5) + a(n-6) - 3*a(n-7) - a(n-9) for n >= 10.
MATHEMATICA
z = 60; s = x + x^3; p = (1 - s) (1 - s^2);
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A154272 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291740 *)
PROG
(PARI) x='x+O('x^99); Vec(((1+x^2)*(1+x-x^2+x^3-2*x^4-x^6))/((-1+x+x^3)^2*(1+x+x^3))) \\ Altug Alkan, Oct 04 2017
CROSSREFS
Sequence in context: A165803 A378925 A327779 * A204520 A358392 A007649
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 12 2017
STATUS
approved