login
A291695
Expansion of the series reversion of Sum_{i>=1} x^i/(1 - x^i) / Product_{j>=1} (1 - x^j).
0
1, -3, 12, -57, 304, -1757, 10746, -68450, 449274, -3016645, 20618317, -142946735, 1002722249, -7103064540, 50738237140, -365049115546, 2642981328372, -19241453032254, 140770867457795, -1034409857616986, 7631075823632553, -56497364856268721, 419641611512419630, -3126180409889288924
OFFSET
1,2
COMMENTS
Reversion of g.f. for A006128.
LINKS
FORMULA
G.f. A(x) satisfies: Sum_{i>=1} A(x)^i/(1 - A(x)^i) / Product_{j>=1} (1 - A(x)^j) = x.
G.f. A(x) satisfies: Sum_{i>=1} i*A(x)^i / Product_{j=1..i} (1 - A(x)^j) = x.
MATHEMATICA
nmax = 24; Rest[CoefficientList[InverseSeries[Series[Sum[x^i/(1 - x^i), {i, 1, nmax}] / Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x], x]]
nmax = 24; Rest[CoefficientList[InverseSeries[Series[(Log[1-x] + QPolyGamma[0, 1, x]) / (Log[x]*QPochhammer[x]), {x, 0, nmax}], x], x]] (* Vaclav Kotesovec, Apr 21 2020 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 30 2017
STATUS
approved