login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291675
a(n) = a(n-1) + 2*a(n-2) + 8*Fibonacci(n) + 2*Fibonacci(n-1); a(1) = 4, a(2) = 14.
1
4, 14, 40, 96, 222, 488, 1052, 2222, 4640, 9592, 19694, 40208, 81748, 165646, 334776, 675184, 1359486, 2733720, 5491308, 11021230, 22104944, 44310984, 88785550, 177835776, 356099812, 712892558, 1426906312, 2855626752, 5714188830, 11433127112, 22873939004
OFFSET
1,1
LINKS
J. Nilsson, On Counting the Number of Tilings of a Rectangle with Squares of Size 1 and 2, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.2. [Page 10, Lemma 5]
FORMULA
G.f.: 2*x*(2*x^2+3*x+2)/((2*x-1)*(x+1)*(x^2+x-1)). - Robert Israel, Aug 29 2017
MAPLE
f:= gfun:-rectoproc({2*a(n)+3*a(n+1)-2*a(n+2)-2*a(n+3)+a(n+4), a(0) = 0, a(1) = 4, a(2) = 14, a(3) = 40}, a(n), remember):
map(f, [$1..100]); # Robert Israel, Aug 29 2017
MATHEMATICA
LinearRecurrence[{2, 2, -3, -2}, {4, 14, 40, 96}, 31] (* Jean-François Alcover, Aug 27 2022 *)
CROSSREFS
Sequence in context: A187594 A326482 A331758 * A066375 A093160 A001938
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, Aug 29 2017
STATUS
approved