login
A291618
Number x = concat(MSD(x),b) such that MSD(x)*b = d(x), where MSD(x) is the Most Significant Digit of x and d(x) is the number of divisors of x.
0
14, 22, 24, 32, 42, 202, 402, 1012, 20008, 30004, 30008, 80001, 80002, 100012, 200008, 300004, 400001, 400008, 1000012, 1000080, 3000012, 4000001, 4000002, 5000016, 6000001, 20000012, 30000004, 40000001, 40000008, 50000016, 60000004, 80000001, 100000012
OFFSET
1,1
EXAMPLE
20008 is in the sequence because MSD(20008) = 2, b = 0008 and 2 * 8 = 16 = d(20008).
MAPLE
with(numtheory): P:=proc(q) local n; for n from 1 to q do
if tau(n)=trunc(n/10^(ilog10(n)))*(n mod 10^ilog10(n)) then print(n); fi;
od; end: P(10^9);
MATHEMATICA
taubnd[n_] := If[n<3, 2, Ceiling@ Exp[1.06602 Log[n] / Log@ Log@ n]]; ndig[n_] := Block[{v, r, b = Min[10^(n-1) - 1, taubnd[10^n]]}, r = Reap[ Do[v = 10^(n-1) d + k; If[DivisorSigma[0, v] == d k, Sow@v], {d, 9}, {k, b}]][[2]]; If[r == {}, r, r[[1]]]]; Join @@ (ndig /@ Range[2, 10]) (* Giovanni Resta, Aug 29 2017 *)
CROSSREFS
Sequence in context: A199250 A199195 A373611 * A266214 A113190 A169804
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Aug 28 2017
EXTENSIONS
a(26)-a(33) from Giovanni Resta, Aug 29 2017
STATUS
approved