OFFSET
0,3
FORMULA
E.g.f.: exp(x)*x*sqrt(1 - x^2)/(1 - 1*2*x^2/(3 - 1*2*x^2/(5 - 3*4*x^2/(7 - 3*4*x^2/(9 - ...))))), a continued fraction.
a(n) ~ (exp(2) - (-1)^n) * n^(n-1) / exp(n+1). - Vaclav Kotesovec, Aug 26 2017
From Emanuele Munarini, Dec 17 2017: (Start)
a(n) = Sum_{k=0..(n-1)/2} binomial(n,2*k+1)*binomial(2*k,k)* (2k)!/4^k.
a(n+4) - 2*a(n+3) - (n^2+4*n+3)*a(n+2) + (n+2)*(2*n+3)*a(n+1) - (n+1)*(n+2)*a(n) = 0. (End)
EXAMPLE
E.g.f.: A(x) = x/1! + 2*x^2/2! + 4*x^3/3! + 8*x^4/4! + 24*x^5/5! + ...
MAPLE
a:=series(arcsin(x)*exp(x), x=0, 26): seq(n!*coeff(a, x, n), n=0..25); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
nmax = 25; Range[0, nmax]! CoefficientList[Series[ArcSin[x] Exp[x], {x, 0, nmax}], x]
nmax = 25; Range[0, nmax]! CoefficientList[Series[Exp[x] x Sqrt[1 - x^2]/(1 + ContinuedFractionK[-2 x^2 Floor[(k + 1)/2] (2 Floor[(k + 1)/2] - 1), 2 k + 1, {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 25; Range[0, nmax]! CoefficientList[Series[Sum[(x^(2 k + 1) Pochhammer[1/2, k])/(k! + 2 k k!), {k, 0, Infinity}] Exp[x], {x, 0, nmax}], x]
Table[Sum[Binomial[n, 2k+1]Binomial[2k, k] (2k)!/4^k, {k, 0, (n-1)/2}], {n, 0, 12}] (* Emanuele Munarini, Dec 17 2017 *)
PROG
(Maxima) makelist(sum(binomial(n, 2*k+1)*binomial(2*k, k)*(2*k)!/4^k, k, 0, floor((n-1)/2)), n, 0, 12); /* Emanuele Munarini, Dec 17 2017 */
(PARI) x='x+O('x^99); concat(0, Vec(serlaplace(asin(x)*exp(x)))) \\ Altug Alkan, Dec 17 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 24 2017
STATUS
approved