login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291482
Expansion of e.g.f. arcsin(x)*exp(x).
3
0, 1, 2, 4, 8, 24, 80, 456, 2368, 20352, 139648, 1577984, 13327360, 185992832, 1860708096, 30882985472, 356724338688, 6860887896064, 89815091306496, 1963843714723840, 28724760194564096, 703639672161697792, 11370790299166343168, 308435832182144040960, 5456591088206554333184, 162354575283061816197120
OFFSET
0,3
FORMULA
E.g.f.: exp(x)*x*sqrt(1 - x^2)/(1 - 1*2*x^2/(3 - 1*2*x^2/(5 - 3*4*x^2/(7 - 3*4*x^2/(9 - ...))))), a continued fraction.
a(n) ~ (exp(2) - (-1)^n) * n^(n-1) / exp(n+1). - Vaclav Kotesovec, Aug 26 2017
From Emanuele Munarini, Dec 17 2017: (Start)
a(n) = Sum_{k=0..(n-1)/2} binomial(n,2*k+1)*binomial(2*k,k)* (2k)!/4^k.
a(n+4) - 2*a(n+3) - (n^2+4*n+3)*a(n+2) + (n+2)*(2*n+3)*a(n+1) - (n+1)*(n+2)*a(n) = 0. (End)
EXAMPLE
E.g.f.: A(x) = x/1! + 2*x^2/2! + 4*x^3/3! + 8*x^4/4! + 24*x^5/5! + ...
MAPLE
a:=series(arcsin(x)*exp(x), x=0, 26): seq(n!*coeff(a, x, n), n=0..25); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
nmax = 25; Range[0, nmax]! CoefficientList[Series[ArcSin[x] Exp[x], {x, 0, nmax}], x]
nmax = 25; Range[0, nmax]! CoefficientList[Series[Exp[x] x Sqrt[1 - x^2]/(1 + ContinuedFractionK[-2 x^2 Floor[(k + 1)/2] (2 Floor[(k + 1)/2] - 1), 2 k + 1, {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 25; Range[0, nmax]! CoefficientList[Series[Sum[(x^(2 k + 1) Pochhammer[1/2, k])/(k! + 2 k k!), {k, 0, Infinity}] Exp[x], {x, 0, nmax}], x]
Table[Sum[Binomial[n, 2k+1]Binomial[2k, k] (2k)!/4^k, {k, 0, (n-1)/2}], {n, 0, 12}] (* Emanuele Munarini, Dec 17 2017 *)
PROG
(Maxima) makelist(sum(binomial(n, 2*k+1)*binomial(2*k, k)*(2*k)!/4^k, k, 0, floor((n-1)/2)), n, 0, 12); /* Emanuele Munarini, Dec 17 2017 */
(PARI) x='x+O('x^99); concat(0, Vec(serlaplace(asin(x)*exp(x)))) \\ Altug Alkan, Dec 17 2017
CROSSREFS
Cf. A001818, A009545, A012316, A081919 (first differences).
Sequence in context: A067646 A152875 A179190 * A065654 A002908 A004528
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 24 2017
STATUS
approved