login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291440
a(n) = pi(n^2) - pi(n)^2, where pi(n) = A000720(n).
10
0, 1, 0, 2, 0, 2, -1, 2, 6, 9, 5, 9, 3, 8, 12, 18, 12, 17, 8, 14, 21, 28, 18, 24, 33, 41, 48, 56, 46, 54, 41, 51, 60, 70, 79, 89, 75, 84, 96, 107, 94, 105, 87, 99, 110, 123, 104, 117, 132, 142, 153, 168, 153, 165, 178, 189, 201, 218, 198, 214, 195, 208, 225, 240, 254, 270, 248, 263, 280, 293, 275, 290, 264, 281, 298, 316, 338, 352, 327, 350
OFFSET
1,4
COMMENTS
The only zero values are a(1) = a(3) = a(5) = 0. The only negative value is a(7) = -1. In particular, pi(n^2) > pi(n)^2 for n > 7. These can be proved by the PNT with error term for large n and computation for smaller n.
For prime(n)^2 - prime(n^2), see A123914.
For pi(n^3) - pi(n)^3, see A291538.
Mincu and Panaitopol (2008) prove that pi(m*n) >= pi(m)*pi(n) for all positive m and n except for m = 5, n = 7; m = 7, n = 5; and m = n = 7. This implies for m = n that a(n) >= 0 if n <> 7. - Jonathan Sondow, Nov 03 2017
Diagonal of the triangular array A294508. - Jonathan Sondow and Robert G. Wilson v, Nov 08 2017
LINKS
Gabriel Mincu and Laurentiu Panaitopol, Properties of some functions connected to prime numbers, J. Inequal. Pure Appl. Math., 9 No. 1 (2008), Art. 12.
FORMULA
a(n) = A000720(n^2) - A000720(n)^2.
a(n) ~ (n^2 / log(n))*(1/2 - 1/log(n)) as n tends to infinity, by the PNT.
From Jonathan Sondow and Robert G. Wilson v, Nov 08 2017: (Start)
a(n) = A294508(n*(n+1)/2).
a(n) >= A294509(n). (End)
EXAMPLE
a(7) = pi(7^2) - pi(7)^2 = 15 - 4^2 = -1.
MAPLE
seq(numtheory:-pi(n^2)-numtheory:-pi(n)^2, n=1..100); # Robert Israel, Aug 25 2017
MATHEMATICA
Table[PrimePi[n^2] - PrimePi[n]^2, {n, 80}]
PROG
(Magma) [#PrimesUpTo(n^2)-#PrimesUpTo(n)^2: n in [1..80]]; // Vincenzo Librandi, Aug 26 2017
(PARI) a(n) = primepi(n^2) - primepi(n)^2; \\ Michel Marcus, Sep 10 2017
KEYWORD
sign
AUTHOR
Jonathan Sondow, Aug 23 2017
STATUS
approved