login
A291419
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = 1/(1 - a(0)*x^a(0)/(1 - a(1)*x^a(1)/(1 - a(2)*x^a(2)/(1 - ...)))), a continued fraction.
1
1, 1, 2, 4, 10, 24, 60, 148, 376, 944, 2392, 6032, 15280, 38608, 97728, 247104, 625312, 1581568, 4001680, 10122624, 25610368, 64787520, 163907904, 414654848, 1049031104, 2653873152, 6713958912, 16985280000, 42970438432, 108708830336, 275018076928, 695755635328, 1760162851328
OFFSET
0,3
EXAMPLE
G.f. = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 24*x^5 + 60*x^6 + ... = 1/(1 - x/(1 - x/(1 - 2*x^2/(1 - 4*x^4/(1 - 10*x^10/(1 - ...)))))).
CROSSREFS
Sequence in context: A052987 A349365 A100087 * A088354 A329673 A055919
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 23 2017
STATUS
approved