login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291355
Number of permutations s_1,s_2,...,s_n of 1,2,...,n such that for all j=1,2,...,n, j divides Sum_{i=1..j} s_i^3.
3
1, 1, 0, 2, 4, 8, 0, 8, 16, 24, 0, 46, 46, 46, 0, 218, 1658, 6542, 0, 0, 2172, 6200, 0, 0, 0, 0, 0, 1652, 5878, 26778, 0, 6242, 6242, 6242, 0, 0, 0, 179878, 0, 169024, 472924, 603878, 0, 123100, 123100, 758560, 0, 0, 0, 0, 0, 0, 244698, 489396, 0, 495512
OFFSET
0,4
COMMENTS
a(n) = 0 if n == 2 mod 4 as in this case n does not divide (n(n+1)/2)^2. In addition, a(4m+2) <= a(4m+3) <= a(4m+4) <= a(4m+5) for all m. - Chai Wah Wu, Aug 23 2017
The similar sequence b(n) in which the element of the permutation are squared instead of cubed, seems much more sparse. For 1 < n <= 250, the only nonzero terms are b(11)=12 and b(23)=480. - Giovanni Resta, Aug 23 2017
LINKS
EXAMPLE
1 divides 1^3,
2 divides 1^3 + 3^3,
3 divides 1^3 + 3^3 + 2^3,
4 divides 1^3 + 3^3 + 2^3 + 4^3.
So [1, 3, 2, 4] satisfies all the conditions.
---------------------------------------------
a(1) = 1: [[1]];
a(3) = 2: [[1, 3, 2], [3, 1, 2]];
a(4) = 4: [[1, 3, 2, 4], [2, 4, 3, 1], [3, 1, 2, 4], [4, 2, 3, 1]];
a(5) = 8: [[1, 3, 2, 4, 5], [2, 4, 3, 1, 5], [2, 4, 3, 5, 1], [3, 1, 2, 4, 5], [3, 5, 4, 2, 1], [4, 2, 3, 1, 5], [4, 2, 3, 5, 1], [5, 3, 4, 2, 1]].
PROG
(Ruby)
def search(a, sum, k, size, num)
if num == size + 1
@cnt += 1
else
(1..size).each{|i|
if a[i - 1] == 0 && (sum + i ** k) % num == 0
a[i - 1] = 1
search(a, sum + i ** k, k, size, num + 1)
a[i - 1] = 0
end
}
end
end
def A(k, n)
a = [0] * n
@cnt = 0
search(a, 0, k, n, 1)
@cnt
end
def A291355(n)
(0..n).map{|i| A(3, i)}
end
p A291355(20)
CROSSREFS
Cf. A291445.
Sequence in context: A119927 A212003 A096255 * A011179 A087570 A124221
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 23 2017
EXTENSIONS
a(0), a(13)-a(30) from Alois P. Heinz, Aug 23 2017
a(31)-a(55) from Giovanni Resta, Aug 23 2017
STATUS
approved