login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291302
a(n) = number of steps to reach a prime when x -> sigma(x)-1 is repeatedly applied to the product of the first n primes, or -1 if no prime is ever reached.
5
0, 1, 1, 2, 1, 3, 3, 1, 3, 4, 46, 57, 7, 9, 17, 1, 45, 1, 33, 8, 10, 4, 3, 32, 6, 47, 17, 21, 41, 17, 12, 11, 10, 31, 74, 25, 99, 11
OFFSET
1,4
EXAMPLE
2*3*5*7*11*13 = 30030 -> 96767 -> 111359 -> 117239 takes three steps to reach a prime, so a(6) = 3.
MAPLE
A291302 := proc(n)
local a, x ;
a := 0 ;
x := mul(ithprime(i), i=1..n) ;
while not isprime(x) do
x := numtheory[sigma](x)-1 ;
a := a+1 ;
end do:
a ;
end proc: # R. J. Mathar, Sep 12 2017
MATHEMATICA
p[n_]:=Times@@Prime/@Range[n]; f[n_]:=DivisorSigma[1, n]-1;
a[n_]:=Length[NestWhileList[f, p[n], CompositeQ]]-1; a/@Range[34] (* Ivan N. Ianakiev, Sep 01 2017 *)
PROG
(Python)
from sympy import primorial, isprime, divisor_sigma
def A291302(n):
m, c = primorial(n), 0
while not isprime(m):
m = divisor_sigma(m) - 1
c += 1
return c # Chai Wah Wu, Aug 31 2017
CROSSREFS
Cf. A039654, A039653, A291301 (the prime reached).
Sequence in context: A238703 A185908 A234951 * A278493 A209334 A180975
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Aug 31 2017
EXTENSIONS
a(11)-a(35) from Chai Wah Wu, Aug 31 2017
a(36)-a(38) from Ivan N. Ianakiev, Sep 01 2017
STATUS
approved