The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291302 a(n) = number of steps to reach a prime when x -> sigma(x)-1 is repeatedly applied to the product of the first n primes, or -1 if no prime is ever reached. 5
 0, 1, 1, 2, 1, 3, 3, 1, 3, 4, 46, 57, 7, 9, 17, 1, 45, 1, 33, 8, 10, 4, 3, 32, 6, 47, 17, 21, 41, 17, 12, 11, 10, 31, 74, 25, 99, 11 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS EXAMPLE 2*3*5*7*11*13 = 30030 -> 96767 -> 111359 -> 117239 takes three steps to reach a prime, so a(6) = 3. MAPLE A291302 := proc(n)     local a, x ;     a := 0 ;     x := mul(ithprime(i), i=1..n) ;     while not isprime(x) do         x := numtheory[sigma](x)-1 ;         a := a+1 ;     end do:     a ; end proc: # R. J. Mathar, Sep 12 2017 MATHEMATICA p[n_]:=Times@@Prime/@Range[n]; f[n_]:=DivisorSigma[1, n]-1; a[n_]:=Length[NestWhileList[f, p[n], CompositeQ]]-1; a/@Range[34] (* Ivan N. Ianakiev, Sep 01 2017 *) PROG (Python) from sympy import primorial, isprime, divisor_sigma def A291302(n):     m, c = primorial(n), 0     while not isprime(m):         m = divisor_sigma(m) - 1         c += 1     return c # Chai Wah Wu, Aug 31 2017 CROSSREFS Cf. A039654, A039653, A291301 (the prime reached). Sequence in context: A238703 A185908 A234951 * A278493 A180975 A210216 Adjacent sequences:  A291299 A291300 A291301 * A291303 A291304 A291305 KEYWORD nonn,more AUTHOR N. J. A. Sloane, Aug 31 2017 EXTENSIONS a(11)-a(35) from Chai Wah Wu, Aug 31 2017 a(36)-a(38) from Ivan N. Ianakiev, Sep 01 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 3 23:48 EDT 2020. Contains 333207 sequences. (Running on oeis4.)