login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291242
p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - 2 S - S^2 + S^3.
2
2, 5, 13, 35, 91, 241, 631, 1662, 4362, 11470, 30127, 79179, 208023, 546633, 1436257, 3773939, 9916134, 26055432, 68461966, 179888381, 472667065, 1241962303, 3263330095, 8574599917, 22530279167, 59199680826, 155550750026, 408719050346, 1073934109927
OFFSET
0,1
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.
FORMULA
G.f.: (-2 - x + 5*x^2 + x^3 - 2*x^4)/(-1 + *x + 4 x^2 - 5*x^3 - 4*x^4 + 2*x^5 + x^6).
a(n) = 2*a(n-1) + 4*a(n-2) - 5*a(n-3) - 4*a(n-4) + 2*a(n-5) + a(n-6) for n >= 7.
MATHEMATICA
z = 60; s = x/(1 - x^2); p = 1 - 2 s - s^2 + s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291242 *)
LinearRecurrence[{2, 4, -5, -4, 2, 1}, {2, 5, 13, 35, 91, 241}, 30] (* Vincenzo Librandi, Aug 29 2017 *)
PROG
(Magma) I:=[2, 5, 13, 35, 91, 241]; [n le 6 select I[n] else 2*Self(n-1)+4*Self(n-2)-5*Self(n-3)-4*Self(n-4)+2*Self(n-5)+Self(n-6): n in [1..30]]; // Vincenzo Librandi, Aug 29 2017
CROSSREFS
Sequence in context: A331755 A137674 A048781 * A097919 A160438 A335725
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 28 2017
STATUS
approved