login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A291033 p-INVERT of the positive integers, where p(S) = 1 - 6*S. 2
6, 48, 378, 2976, 23430, 184464, 1452282, 11433792, 90018054, 708710640, 5579667066, 43928625888, 345849340038, 2722866094416, 21437079415290, 168773769227904, 1328753074407942, 10461250826035632, 82361253533877114, 648428777444981280, 5105068966025973126 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

See A290890 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (8, -1)

FORMULA

G.f.: 6/(1 - 8 x + x^2).

a(n) = 8*a(n-1) - a(n-2).

a(n) = 6*A001090(n) for n >= 1.

MATHEMATICA

z = 60; s = x/(1 - x)^2; p = 1 - 6 s;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)

Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291033 *)

CROSSREFS

Cf. A000027, A290890.

Sequence in context: A052625 A326888 A326895 * A155130 A250164 A264083

Adjacent sequences:  A291030 A291031 A291032 * A291034 A291035 A291036

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 19 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 4 21:32 EDT 2021. Contains 346455 sequences. (Running on oeis4.)