login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290963
Primes p such that sum of digits of p^3 is semiprime.
1
3, 7, 29, 41, 53, 59, 71, 83, 89, 113, 131, 137, 149, 157, 167, 173, 179, 197, 199, 227, 233, 239, 251, 263, 269, 281, 293, 317, 347, 379, 401, 409, 419, 431, 457, 463, 467, 479, 491, 503, 509, 521, 569, 617, 619, 641, 643, 647, 661, 677, 691, 701, 733, 743, 757, 761, 769, 797, 823, 829, 859, 883, 911
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(2) = 7 is prime: 7^3 = 343; 3 + 4 + 3 = 10 = 2*5 that is semiprime.
a(3) = 29 is prime : 29^3 = 24389; 2 + 4 + 3 + 8 + 9 = 26 = 2*13 that is semiprime.
a(5) = 53 is prime : 53^3 = 148877; 1 + 4 + 8 + 8 + 7 + 7 = 35 = 5*7 that is semiprime.
MAPLE
select(p -> isprime(p) and numtheory:-bigomega(convert(convert(p^3, base, 10), `+`)) = 2, [seq(i, i=3..1000, 2)]); # Robert Israel, Aug 15 2017
MATHEMATICA
Select[Prime[Range[500]], PrimeOmega[Plus @@ IntegerDigits[#^3]] == 2 &]
PROG
(PARI) lista(nn) = forprime(p=3, nn, if(bigomega(sumdigits(p^3)) == 2, print1(p, ", "))); \\ Altug Alkan, Aug 16 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Aug 15 2017
STATUS
approved