login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290958
G.f. A(x) satisfies: A( 2*A(x)^2 + 4*A(x)^3 ) = 2*x^2 - 4*x^3.
2
1, -2, 6, -26, 100, -460, 2258, -11558, 60786, -326826, 1785930, -9893778, 55447800, -313817720, 1791442406, -10303155322, 59642852324, -347233450156, 2031756438046, -11941773701426, 70471288256196, -417379686511812, 2480161711278070, -14781955283569090, 88343937381017274, -529319474378769346, 3178848917169132254, -19131855254581689246
OFFSET
1,2
COMMENTS
Series reversion of the g.f. is described by A290957.
LINKS
FORMULA
a(n) ~ (-1)^(n+1) * c * d^n / n^(3/2), where d = 6.36304571910819028529344... and c = 0.086619593102483539978... - Vaclav Kotesovec, Aug 28 2017
EXAMPLE
G.f.: A(x) = x - 2*x^2 + 6*x^3 - 26*x^4 + 100*x^5 - 460*x^6 + 2258*x^7 - 11558*x^8 + 60786*x^9 - 326826*x^10 + 1785930*x^11 - 9893778*x^12 + 55447800*x^13 - 313817720*x^14 + 1791442406*x^15 - 10303155322*x^16 + 59642852324*x^17 - 347233450156*x^18 + 2031756438046*x^19 - 11941773701426*x^20 +...
such that A( 2*A(x)^2 - 4*A(x)^3 ) = 2*x^2 + 4*x^3.
Let B(x) be the series reversion of A(x), then B(x) is the g.f. of A290957 and begins;
B(x) = x + 2*x^2 + 2*x^3 + 6*x^4 + 40*x^5 + 208*x^6 + 798*x^7 + 3122*x^8 + 15038*x^9 + 77830*x^10 + 381798*x^11 + 1819998*x^12 + 8925172*x^13 + 45280900*x^14 + 231030138*x^15 + 1171823534*x^16 +...+ A290957(n)*x^n +...
where B( 2*x^2 - 4*x^3 ) = 2*A(x)^2 + 4*A(x)^3,
also, A( 2*x^2 + 4*x^3 ) = 2*B(x)^2 - 4*B(x)^3,
and B( 2*B(x)^2 - 4*B(x)^3 ) = 2*x^2 + 4*x^3.
Related series begin:
2*A(x)^2 + 4*A(x)^3 = 2*x^2 + 12*x^3 + 40*x^4 + 112*x^5 + 416*x^6 + 2112*x^7 + 10336*x^8 + 45936*x^9 + 206192*x^10 + 999376*x^11 + 5026640*x^12 +...
2*B(x)^2 - 4*B(x)^3 = 2*x^2 - 12*x^3 + 56*x^4 - 272*x^5 + 1312*x^6 - 6432*x^7 + 32640*x^8 - 170576*x^9 + 911696*x^10 - 4963760*x^11 + 27425200*x^12 +...
PROG
(PARI) /* Informal code to generate N terms */
{C=[1, -2]; for(i=1, N=60,
A = sum(n=1, #C, C[n]*x^(n) ) + t*x^(#C+1) +O(x^(#C+2));
S = subst(A, x, 2*A^2 + 4*A^3);
C = concat(C, polcoeff(subst(-S/deriv(polcoeff(S, #C+2, x), t), t, 0), #C+2, x) )); C}
CROSSREFS
Cf. A290957 (inverse), A271961.
Sequence in context: A083845 A027239 A191821 * A323265 A285024 A192403
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 14 2017
STATUS
approved