login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290868
a(n) is the number of fixed tree polycubes of size n that are proper in n-5 dimensions.
0
0, 1, 568, 116004, 15998985, 1839569920, 194498568156, 19903875199488, 2028587719434848, 209368404017676288, 22100537701746000000, 2400300773277150740480, 269182253907724040230656, 31234215889947671471849472, 3753858472917234012947022848, 467486957946431078400000000000
OFFSET
5,3
COMMENTS
Denoted DT(n,n-5).
LINKS
G. Barequet and M. Shalah, Counting n-cell polycubes proper in n-k dimensions, European Journal of Combinatorics, 63 (2017), 146-163.
G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, In Proceedings of the 8th European Conference on Combinatorics, Graph Theory and Applications, 49 (2015), 145-151, 2015.
G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, In Video Review at the 31st Symposium on Computational Geometry, 19-22, 2015.
FORMULA
a(n) = 2^(n-9)*n^(n-11)*(n-5)*(240*n^11 - 6480*n^10 + 73640*n^9 - 461232*n^8 + 1778615*n^7 - 4707195*n^6 + 11632070*n^5 - 41919528*n^4 + 158857920*n^3 - 483329520*n^2 + 1481660640*n - 2863123200)/360. (proved)
CROSSREFS
A290738 gives the total number of fixed n-cell polycubes (not necessarily trees) that are proper in n-5 dimensions.
Sequence in context: A234228 A184682 A223164 * A214140 A192822 A356443
KEYWORD
nonn
AUTHOR
Mira Shalah, Aug 12 2017
STATUS
approved