login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290818
Array read by antidiagonals: T(m,n) = number of irredundant sets in the lattice (rook) graph K_m X K_n.
4
2, 3, 3, 4, 11, 4, 5, 24, 24, 5, 6, 47, 94, 47, 6, 7, 88, 272, 272, 88, 7, 8, 163, 774, 1185, 774, 163, 8, 9, 304, 2230, 4280, 4280, 2230, 304, 9, 10, 575, 6542, 15781, 20106, 15781, 6542, 575, 10, 11, 1104, 19452, 60604, 88512, 88512, 60604, 19452, 1104, 11
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Irredundant Set
Eric Weisstein's World of Mathematics, Rook Graph
FORMULA
T(m,n) = A290632(m, n) + Sum_{k=0..m-1} Sum_{r=2*k..n-1} binomial(m,k) * binomial(n,r) * k! * A008299(r,k) * c(m-k,n-r) where c(m,n) = Sum_{i=0..m-1} binomial(n,i) * (n^i - n!*stirling2(i, n)).
EXAMPLE
Array begins:
===============================================================
m\n| 1 2 3 4 5 6 7 8
---+-----------------------------------------------------------
1 | 2 3 4 5 6 7 8 9 ...
2 | 3 11 24 47 88 163 304 575 ...
3 | 4 24 94 272 774 2230 6542 19452 ...
4 | 5 47 272 1185 4280 15781 60604 240073 ...
5 | 6 88 774 4280 20106 88512 400728 1879744 ...
6 | 7 163 2230 15781 88512 453271 2326534 12363513 ...
7 | 8 304 6542 60604 400728 2326534 13169346 76446456 ...
8 | 9 575 19452 240073 1879744 12363513 76446456 476777153 ...
...
MATHEMATICA
s[n_, k_]:=Sum[(-1)^i*Binomial[n, i] StirlingS2[n - i, k - i], {i, 0, Min[n, k]}];
c[m_, n_, x_]:=Sum[Binomial[m, i] (n^i - n!*StirlingS2[i, n])*x^i, {i, 0, m - 1}];
p[m_, n_, x_]:=Sum[Sum[Binomial[m, k] Binomial[n, r]* k!*s[r, k]*x^r*c[m - k, n - r, x], {r, 2k, n - 1}], {k, 0, m - 1}];
b[m_, n_, x_]:=m^n*x^n + n^m*x^m - If[n<=m, n!*x^m*StirlingS2[m, n], m!*x^n*StirlingS2[n, m]];
T[m_, n_]:= b[m, n, 1] + p[m, n, 1];
Table[T[n, m -n + 1], {m, 10}, {n, m}]//Flatten
(* Indranil Ghosh, Aug 12 2017, after PARI code *)
PROG
(PARI) \\ See A. Howroyd note in A290586 for explanation.
s(n, k)=sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) );
c(m, n, x)=sum(i=0, m-1, binomial(m, i) * (n^i - n!*stirling(i, n, 2))*x^i);
p(m, n, x)={sum(k=0, m-1, sum(r=2*k, n-1, binomial(m, k) * binomial(n, r) * k! * s(r, k) * x^r * c(m-k, n-r, x) ))}
b(m, n, x) = m^n*x^n + n^m*x^m - if(n<=m, n!*x^m*stirling(m, n, 2), m!*x^n*stirling(n, m, 2));
T(m, n) = b(m, n, 1) + p(m, n, 1);
for(m=1, 10, for(n=1, m, print1(T(n, m-n+1), ", ")));
CROSSREFS
Row 2 is A290707 for n > 1.
Main diagonal is A290586.
Sequence in context: A128744 A293984 A207608 * A240376 A118963 A127641
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Aug 11 2017
STATUS
approved