login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290204
Bases b for which there exists an integer y such that y^2 in base b consists of 4 identical digits.
1
7, 41, 99, 239, 1393, 2943, 8119, 45368, 47321, 82417, 144721, 275807, 470743, 1607521, 9369319, 54608393, 86105599, 184424193, 187869927, 257926007, 318281039, 333815123, 345611082, 500001500, 694220327, 1176320495, 1314587843, 1397186643, 1534997397, 1855077841
OFFSET
1,1
COMMENTS
Equivalently, numbers k such that A007913(1 + k + k^2 + k^3) < k, where A007913(n) is the squarefree part of n. Sequence is infinite since, as pointed out in Bridy et al., it contains all the terms of A002315 greater than 1. - Giovanni Resta, Jul 25 2017
REFERENCES
Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
LINKS
Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, preprint arXiv:1707.03894 [math.NT], July 14 2017.
EXAMPLE
For example, for b = 7, we have y = 20, and the base-b representation of y^2 is 1111.
From Michael De Vlieger, Jul 24 2017: (Start)
Integers y for bases b:
Base b Integers y
------ ----------------------------------
7 20, 40
41 1218
99 7540
239 20280, 40560
1393 1373090
2943 4903600
8119 23308460, 46616920
45368 316540365, 633080730, 949621095,
1266161460, 1582701825, 1899242190
(End)
MATHEMATICA
Select[Range[2, 3000], Function[b, Count[Map[FromDigits[ConstantArray[#, 4], b] &, Range@ b], k_ /; IntegerQ@ Sqrt@ k] > 0]] (* Michael De Vlieger, Jul 24 2017 *) (* or *)
core[n_] := Block[{f = Transpose@ FactorInteger@ n}, Times @@ (f[[1]]^ Mod[f[[2]], 2])]; Select[Range[10^5], core[1 + # + #^2 + #^3] < # &] (* Giovanni Resta, Jul 25 2017 *)
CROSSREFS
Sequence in context: A031909 A080347 A007398 * A138629 A127923 A230018
KEYWORD
nonn,base
AUTHOR
Jeffrey Shallit, Jul 24 2017
EXTENSIONS
a(16)-a(30) from Giovanni Resta, Jul 25 2017
STATUS
approved