login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289761
Maximum length of a perfect Wichmann ruler with n segments.
7
3, 6, 9, 12, 15, 22, 29, 36, 43, 50, 57, 68, 79, 90, 101, 112, 123, 138, 153, 168, 183, 198, 213, 232, 251, 270, 289, 308, 327, 350, 373, 396, 419, 442, 465, 492, 519, 546, 573, 600, 627, 658, 689, 720, 751, 782, 813, 848, 883, 918, 953, 988, 1023, 1062, 1101, 1140, 1179, 1218, 1257, 1300, 1343, 1386, 1429
OFFSET
2,1
COMMENTS
For definitions see A103294.
LINKS
B. Wichmann, A note on restricted difference bases, J. Lond. Math. Soc. 38 (1963), 465-466.
FORMULA
a(n) = ( n^2 - (mod(n,6)-3)^2 ) / 3 + n.
Conjectures from Colin Barker, Jul 14 2017: (Start)
G.f.: x^2*(3 + 4*x^5 - 3*x^6) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8) for n>9.
(End)
MATHEMATICA
Table[(n^2 - (Mod[n, 6] - 3)^2)/3 + n, {n, 2, 66}] (* Michael De Vlieger, Jul 14 2017 *)
PROG
(PARI) a(n) = n + (n^2 - (n%6 - 3)^2)/3; \\ Michel Marcus, Jul 14 2017
(Python)
def A289761(n): return (n+(m:=n%6))*(n-(k:=m-3))//3+k # Chai Wah Wu, Jun 20 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Hugo Pfoertner, Jul 12 2017
STATUS
approved