Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Oct 13 2019 06:14:41
%S 1,3,15,22,12,36,24,66,126,420,90,364,270,264,240,210,672,780,864,
%T 1050,672,720,924,1092,1344,3240,3312,1260,3600,1200,8910,1080,27104,
%U 5940,1680,8568,8910,14280,6384,5670,5544,9600,43092,42900,5280,3360,9504,8580,21600,54288
%N Smallest integer such that the sum of its n smallest divisors is a square.
%C The first corresponding squares are 1, 4, 9, 36, 16, 25, 36, 144, 81, ...
%C The first squares in the sequence are 1, 36, 3600, ...
%H Robert Israel, <a href="/A289712/b289712.txt">Table of n, a(n) for n = 1..241</a>
%e a(4)=22 because the sum of the first 4 divisors of 22, i.e., 1 + 2 + 11 + 22 = 36, is a square, and 22 is the smallest integer with this property.
%p N:= 5*10^5: # to get terms before the first term > N
%p for k from 1 to N do
%p d:= sort(convert(numtheory:-divisors(k),list));
%p s:= ListTools:-PartialSums(d);
%p for m from 1 to nops(d) do
%p if not assigned(A[m]) and issqr(s[m]) then A[m]:= k fi
%p od
%p od:
%p iA:= map(op,{indices(A)}):
%p seq(A[i],i=1..min({$1..max(iA)+1} minus iA)-1); # _Robert Israel_, Oct 01 2017
%t Table[k=1;While[Nand[Length@#>=n,IntegerQ[Sqrt[Total@Take[PadRight[#,n],n]]]]&@Divisors@k,k++];k,{n,1,50}] (* Program from _Michael De Vlieger_ adapted for this sequence. See A289776. *)
%o (PARI) isok(k, n) = {my(v = divisors(k)); if (#v < n, return(0)); issquare(sum(j=1, n, v[j]));}
%o a(n) = {my(k = 1); while(!isok(k,n), k++); k;} \\ _Michel Marcus_, Sep 04 2017
%Y Cf. A000290, A027750, A240698, A289776.
%K nonn
%O 1,2
%A _Michel Lagneau_, Sep 02 2017