login
A289684
Mixing moments for the waiting time in an M/G/1 waiting queue.
2
1, 2, 9, 42, 199, 950, 4554, 21884, 105323, 507398, 2446022, 11796884, 56912838, 274630876, 1325431956, 6397576888, 30882340531, 149084312006, 719736965358, 3474807470756, 16776410481266, 80998307687668, 391074406408716, 1888199373821896, 9116752061308798
OFFSET
0,2
COMMENTS
In the paper by Karpov et al., a(n) (resp. 2*a(n)) is the size of the Condorcet domain on 2*n (resp. 2*n+1) alternatives defined by the so-called even 1N33N1 scheme, cf. A144685. - Andrey Zabolotskiy, Jan 27 2024
LINKS
J. Abate and W. Whitt, Integer Sequences from Queueing Theory, J. Int. Seq. 13 (2010), 10.5.5, eq. (30) and (32).
Alexander Karpov, Klas Markström, Søren Riis and Bei Zhou, Set-alternating schemes: A new class of large Condorcet domains, arXiv:2308.02817 [cs.DM], 2023.
FORMULA
G.f.: 1/(2-A000108(x)^2), where A000108(x) is the generating function of the Catalan Numbers.
Conjecture: n*a(n) + 2*(-4*n+3)*a(n-1) + 12*(n-2)*a(n-2) + 8*(2*n-3)*a(n-3) = 0.
From Robert Israel, Mar 31 2019: (Start)
Conjecture verified (for n >= 4) using the differential equation (16*x^3 + 12*x^2 - 8*x + 1)*y' + (24*x^2 - 2)*y -12*x^2 + 2*x = 0 satisfied by the g.f.
a(n) ~ (sqrt(2)/4)*(2 + 2*sqrt(2))^n. (End)
MAPLE
f:= gfun:-rectoproc({n*a(n) +2*(-4*n+3)*a(n-1) +12*(n-2)*a(n-2) +8*(2*n-3)*a(n-3), a(0)=1, a(1)=2, a(2)=9, a(3)=42}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Mar 31 2019
MATHEMATICA
CoefficientList[2 x^2/(4 x^2 + 2x + Sqrt[1 - 4x] - 1) + O[x]^25, x] (* Jean-François Alcover, Aug 26 2022 *)
CROSSREFS
Sequence in context: A056845 A354302 A162273 * A368764 A280955 A276508
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jul 09 2017
STATUS
approved