Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 29 2023 05:02:02
%S 0,0,0,1,1,1,1,2,3,4,6,8,11,15,21,30,42,59,82,114,159,222,311,435,608,
%T 849,1185,1655,2312,3231,4515,6308,8812,12309,17195,24022,33561,46888,
%U 65505,91512,127843,178599,249509,348575,486975,680323,950434,1327786
%N Numbers b_n of Fibonacci-quilt legal decompositions of n.
%H Minerva Catral, P. L. Ford, P. E. Harris, S. J. Miller, et al., <a href="https://arxiv.org/abs/1606.09312">Legal Decompositions Arising from Non-positive Linear Recurrences</a>, arXiv preprint arXiv:1606.09312 [math.CO], 2016.
%H Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller, and Dawn Nelson, <a href="https://www.fq.math.ca/Papers1/54-4/CatFrdHarMilNel10202016.pdf">Legal Decompositions Arising From Non-Positive Linear Recurrences</a>, Fibonacci Quart. 54 (2016), no. 4, 348-365. See Table 1. p. 358.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,0,1)
%F Catral et al. give a linear recurrence.
%F G.f.: -x^4*(1 + x^4)/(-1 + x + x^5 + x^7). - _R. J. Mathar_, Aug 07 2017
%t Join[{0}, LinearRecurrence[{1, 0, 0, 0, 1, 0, 1}, {0, 0, 1, 1, 1, 1, 2}, 47]] (* _Jean-François Alcover_, Jan 07 2019 *)
%Y Cf. A000931, A289433.
%K nonn
%O 1,8
%A _N. J. A. Sloane_, Jul 06 2017