login
A289432
Numbers b_n of Fibonacci-quilt legal decompositions of n.
1
0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 21, 30, 42, 59, 82, 114, 159, 222, 311, 435, 608, 849, 1185, 1655, 2312, 3231, 4515, 6308, 8812, 12309, 17195, 24022, 33561, 46888, 65505, 91512, 127843, 178599, 249509, 348575, 486975, 680323, 950434, 1327786
OFFSET
1,8
LINKS
Minerva Catral, P. L. Ford, P. E. Harris, S. J. Miller, et al., Legal Decompositions Arising from Non-positive Linear Recurrences, arXiv preprint arXiv:1606.09312 [math.CO], 2016.
Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller, and Dawn Nelson, Legal Decompositions Arising From Non-Positive Linear Recurrences, Fibonacci Quart. 54 (2016), no. 4, 348-365. See Table 1. p. 358.
FORMULA
Catral et al. give a linear recurrence.
G.f.: -x^4*(1 + x^4)/(-1 + x + x^5 + x^7). - R. J. Mathar, Aug 07 2017
MATHEMATICA
Join[{0}, LinearRecurrence[{1, 0, 0, 0, 1, 0, 1}, {0, 0, 1, 1, 1, 1, 2}, 47]] (* Jean-François Alcover, Jan 07 2019 *)
CROSSREFS
Sequence in context: A064323 A003411 A034081 * A064660 A321359 A321567
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 06 2017
STATUS
approved