login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289432
Numbers b_n of Fibonacci-quilt legal decompositions of n.
1
0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 21, 30, 42, 59, 82, 114, 159, 222, 311, 435, 608, 849, 1185, 1655, 2312, 3231, 4515, 6308, 8812, 12309, 17195, 24022, 33561, 46888, 65505, 91512, 127843, 178599, 249509, 348575, 486975, 680323, 950434, 1327786
OFFSET
1,8
LINKS
Minerva Catral, P. L. Ford, P. E. Harris, S. J. Miller, et al., Legal Decompositions Arising from Non-positive Linear Recurrences, arXiv preprint arXiv:1606.09312 [math.CO], 2016.
Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller, and Dawn Nelson, Legal Decompositions Arising From Non-Positive Linear Recurrences, Fibonacci Quart. 54 (2016), no. 4, 348-365. See Table 1. p. 358.
FORMULA
Catral et al. give a linear recurrence.
G.f.: -x^4*(1 + x^4)/(-1 + x + x^5 + x^7). - R. J. Mathar, Aug 07 2017
MATHEMATICA
Join[{0}, LinearRecurrence[{1, 0, 0, 0, 1, 0, 1}, {0, 0, 1, 1, 1, 1, 2}, 47]] (* Jean-François Alcover, Jan 07 2019 *)
CROSSREFS
Sequence in context: A064323 A003411 A034081 * A064660 A321359 A321567
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 06 2017
STATUS
approved