login
A289288
Starting with a(1) = 1, a(n) = smallest nonnegative integer not yet in the sequence such that the last digit of a(n-1) plus the first digit of a(n) is equal to 10. The digit 0 is not allowed.
1
1, 9, 11, 91, 92, 8, 2, 81, 93, 7, 3, 71, 94, 6, 4, 61, 95, 5, 51, 96, 41, 97, 31, 98, 21, 99, 12, 82, 83, 72, 84, 62, 85, 52, 86, 42, 87, 32, 88, 22, 89, 13, 73, 74, 63, 75, 53, 76, 43, 77, 33, 78, 23, 79, 14, 64, 65, 54, 66, 44, 67, 34, 68, 24, 69, 15, 55, 56, 45, 57, 35, 58, 25, 59, 16, 46, 47, 36, 48, 26, 49, 17, 37, 38, 27, 39, 18, 28, 29, 19, 111, 911, 912, 811, 913, 711, 914, 611, 915, 511, 916, 411, 917, 311, 918, 211, 919, 112, 812, 813, 712
OFFSET
1,2
COMMENTS
Unlike the sequences in A289283 - A289287, this sequence is infinite and does not seem to follow central polygonal numbers.
MATHEMATICA
Module[{a = {1}, k, d = 10}, TimeConstrained[Do[k = 2; While[Or[MemberQ[a, k], MemberQ[IntegerDigits@ k, 0], # != d] &[Mod[a[[n - 1]], 10] + First@ IntegerDigits@ k], k++]; AppendTo[a, k], {n, 2, Infinity}], 2]; a] (* Michael De Vlieger, Jul 14 2017 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Enrique Navarrete, Jul 01 2017
STATUS
approved