OFFSET
1,1
COMMENTS
Ecklund and Eggleton proved that binomial(n,k) > n^pi(k) for n >= 2k and k >= 202, where pi(k) = A000720(k). Therefore this sequence is finite.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..104
Earl F. Ecklund, Jr. and Roger B. Eggleton, Prime factors of consecutive integers, The American Mathematical Monthly, Vol. 79, No. 10 (1972), pp. 1082-1089.
MATHEMATICA
binomQ[n_] := Binomial[2n, n] < (2n)^PrimePi[n]; Select[Range[250], binomQ]
PROG
(PARI) isok(n) = binomial(2*n, n) < (2*n)^primepi(n); \\ Michel Marcus, Jun 28 2017
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Amiram Eldar, Jun 27 2017
STATUS
approved