

A289178


Numbers n such that binomial(2*n,n) < (2*n)^pi(n).


1



3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Ecklund and Eggleton proved that binomial(n,k) > n^pi(k) for n >= 2k and k >= 202, where pi(k) = A000720(k). Therefore this sequence is finite.


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..104
Earl F. Ecklund, Jr. and Roger B. Eggleton, Prime factors of consecutive integers, The American Mathematical Monthly, Vol. 79, No. 10 (1972), pp. 10821089.


MATHEMATICA

binomQ[n_] := Binomial[2n, n] < (2n)^PrimePi[n]; Select[Range[250], binomQ]


PROG

(PARI) isok(n) = binomial(2*n, n) < (2*n)^primepi(n); \\ Michel Marcus, Jun 28 2017


CROSSREFS

Cf. A000720, A000984.
Sequence in context: A039129 A194370 A039092 * A212450 A047585 A288224
Adjacent sequences: A289175 A289176 A289177 * A289179 A289180 A289181


KEYWORD

nonn,fini,full


AUTHOR

Amiram Eldar, Jun 27 2017


STATUS

approved



