login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289156
Largest area of triangles with integer sides and area = n times perimeter.
3
60, 1224, 8436, 34320, 103020, 254040, 546084, 1060896, 1907100, 3224040, 5185620, 8004144, 11934156, 17276280, 24381060, 33652800, 45553404, 60606216, 79399860, 102592080, 130913580, 165171864, 206255076, 255135840
OFFSET
1,1
LINKS
Ray Chandler, Table of n, a(n) for n = 1..5000 (first 100 terms from Zhining Yang)
FORMULA
From Colin Barker, Jun 28 2017: (Start)
G.f.: 12*x*(5 + 72*x + 166*x^2 + 72*x^3 + 5*x^4) / (1 - x)^6.
a(n) = 4*n*(2*n^2 + 1)*(4*n^2 + 1).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
a(n) = A120573(2n). - Ray Chandler, Jul 27 2017
EXAMPLE
For n = 4, a(4) = 34320 means for the largest triangles (a,b,c) = (66,4225,4289), the area is 34320 which is 4 times the perimeter 8580.
MATHEMATICA
Table[4 n (2 n^2 + 1) (4 n^2 + 1), {n, 27}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {60, 1224, 8436, 34320, 103020, 254040}, 27] (* or *) Rest@ CoefficientList[Series[12 x (5 + 72 x + 166 x^2 + 72 x^3 + 5 x^4)/(1 - x)^6, {x, 0, 27}], x] (* Michael De Vlieger, Jul 03 2017 *)
PROG
(PARI) Vec(12*x*(5 + 72*x + 166*x^2 + 72*x^3 + 5*x^4) / (1 - x)^6 + O(x^30)) \\ Colin Barker, Jun 28 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zhining Yang, Jun 26 2017
STATUS
approved