The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289131 a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 2*a(n-4) + 2*a(n-5) for n >= 6, a(0) = 2, a(1) = 4, a(2) = 7, a(3) = 11, a(4) = 18, a(5) = 28. 2
 2, 4, 7, 11, 18, 28, 43, 65, 96, 142, 205, 299, 426, 616, 871, 1253, 1764, 2530, 3553, 5087, 7134, 10204, 14299, 20441, 28632, 40918, 57301, 81875, 114642, 163792, 229327, 327629, 458700, 655306, 917449, 1310663, 1834950, 2621380, 3669955, 5242817, 7339968 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Conjecture:  a(n) is the number of letters (0's and 1's) in the n-th iterate of the mapping 00->0010, 01->011, 10->010, starting with 00; see A289128. LINKS Clark Kimberling, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-2,2). FORMULA a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 2*a(n-4) + 2*a(n-5) for n >= 6, a(0) = 2, a(1) = 4, a(2) = 7, a(3) = 11, a(4) = 18, a(5) = 28. From Colin Barker, Jul 02 2017: (Start) G.f.: (2 + 2*x - 3*x^2 - 2*x^3 + 2*x^4 + 2*x^5) / ((1 - x)^2*(1 + x)*(1 - 2*x^2)). a(n) = -(3*n)/2 + 7*2^(n/2) - 4 for n>0 and even. a(n) = (-3*n + 5*2^((n + 3)/2) - 9) / 2 for n odd. (End) MATHEMATICA Join[{2}, LinearRecurrence[{1, 3, -3, -2, 2}, {4, 7, 11, 18, 28}, 40]] PROG (PARI) Vec((2 + 2*x - 3*x^2 - 2*x^3 + 2*x^4 + 2*x^5) / ((1 - x)^2*(1 + x)*(1 - 2*x^2)) + O(x^50)) \\ Colin Barker, Jul 02 2017 CROSSREFS Cf. A289128. Sequence in context: A003403 A261666 A034412 * A054352 A091838 A288219 Adjacent sequences:  A289128 A289129 A289130 * A289132 A289133 A289134 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jun 28 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 13:18 EST 2020. Contains 338724 sequences. (Running on oeis4.)