

A289091


Decimal expansion of (E(x^5))^(1/5), with x being a normally distributed random variable.


4



1, 4, 4, 8, 7, 9, 1, 9, 0, 1, 5, 4, 9, 3, 0, 5, 2, 8, 5, 2, 5, 3, 5, 4, 6, 5, 9, 8, 8, 1, 2, 8, 1, 0, 5, 8, 8, 2, 1, 3, 4, 0, 1, 0, 3, 9, 3, 5, 1, 9, 6, 7, 8, 0, 7, 2, 9, 5, 0, 3, 0, 5, 8, 0, 1, 5, 5, 4, 3, 6, 2, 8, 4, 7, 7, 4, 2, 7, 2, 8, 1, 2, 0, 5, 4, 2, 7, 4, 0, 2, 8, 1, 2, 4, 3, 6, 3, 3, 8, 6, 9, 7, 4, 9, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The 5th root r(5) of the expected value E(x^5) for a normal distribution with zero mean and standard deviation 1. See A289090 for more details.


LINKS



FORMULA

a = r(5), where r(p) = ((p1)!!*sqrt(2/Pi))^(1/p).


EXAMPLE

1.44879190154930528525354659881281058821340103935196780729503058015...


PROG

(PARI) // General code, for any p > 0:
r(p) = (sqrt(2/Pi)^(p%2)*prod(k=0, (p2)\2, p12*k))^(1/p);
a = r(5) // Present instance


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



