login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076668
Decimal expansion of sqrt(2/Pi).
6
7, 9, 7, 8, 8, 4, 5, 6, 0, 8, 0, 2, 8, 6, 5, 3, 5, 5, 8, 7, 9, 8, 9, 2, 1, 1, 9, 8, 6, 8, 7, 6, 3, 7, 3, 6, 9, 5, 1, 7, 1, 7, 2, 6, 2, 3, 2, 9, 8, 6, 9, 3, 1, 5, 3, 3, 1, 8, 5, 1, 6, 5, 9, 3, 4, 1, 3, 1, 5, 8, 5, 1, 7, 9, 8, 6, 0, 3, 6, 7, 7, 0, 0, 2, 5, 0, 4, 6, 6, 7, 8, 1, 4, 6, 1, 3, 8, 7, 2, 8, 6, 0, 6, 0
OFFSET
0,1
COMMENTS
This is the limit of (n+1)!!/n!!/n^(1/2) at n_even->inf.
Expected value of |x - mu|/sigma for normal distribution with mean mu and standard deviation sigma (i.e., the normalized mean absolute deviation). - Stanislav Sykora, Jun 30 2017
LINKS
Harmann König, Carsten Schütt, and Nicole Tomczak-Jaegermann, Projection constants of symmetric spaces and variants of Khintchine's inequality, J. reine angew. Math. 511 (1999), pp. 1-42.
FORMULA
Equals A087197*A002193. - R. J. Mathar Feb 05 2009
Equals integral_{-infinity..infinity} (1-erf(x)^2)/2 dx. - Jean-François Alcover, Feb 25 2015
EXAMPLE
0.79788456080286535587989211986876373695171726232986931533...
MATHEMATICA
RealDigits[Sqrt[2/Pi], 10, 120][[1]] (* Harvey P. Dale, Feb 05 2012 *)
PROG
(Magma) pi:=Sqrt(2/Pi(RealField(110))); Reverse(Intseq(Floor(10^110*pi))); // Vincenzo Librandi, Jul 01 2017
(PARI) sqrt(2/Pi) \\ G. C. Greubel, Sep 23 2017
CROSSREFS
Cf. A004730, A004731, A019727, A060294 (Buffon's constant 2/Pi), A092678 (probable error).
Sequence in context: A345384 A199742 A258112 * A010729 A340220 A182688
KEYWORD
nonn,cons
AUTHOR
Zak Seidov, Oct 25 2002
EXTENSIONS
More terms and better description from Benoit Cloitre and Michael Somos, Oct 29 2002
Leading zero removed, offset changed by R. J. Mathar, Feb 05 2009
STATUS
approved