login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A288516 Number of (undirected) paths in the ladder graph P_2 X P_n. 5
1, 12, 49, 146, 373, 872, 1929, 4118, 8589, 17644, 35889, 72538, 146021, 293200, 587801, 1177278, 2356541, 4715412, 9433537, 18870210, 37744021, 75492152, 150988969, 301983206, 603972333, 1207951292, 2415909969, 4831828138, 9663665349, 19327340704 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..200

Eric Weisstein's World of Mathematics, Graph Path

Eric Weisstein's World of Mathematics, Ladder Graph

Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-9,2).

FORMULA

a(n) = 18*(2^n - 1) - n*(n^2 + 9*n + 41)/3. - Eric W. Weisstein, Jun 30 2017

a(n) = 6*a(n-1)-14*a(n-2)+16*a(n-3)-9*a(n-4)+2*a(n-5) for n > 5.

G.f.: x*(1+6*x-9*x^2+4*x^3)/((1-x)^4*(1-2*x)).

a(n) = 18*(2^n-1) - (41*n)/3 - 3*n^2 - n^3/3. - Colin Barker, Jun 11 2017

MATHEMATICA

Table[18 (2^n - 1) - n (n^2 + 9 n + 41)/3, {n, 20}] (* Eric W. Weisstein, Jun 30 2017 *)

LinearRecurrence[{6, -14, 16, -9, 2}, {1, 12, 49, 146, 373}, 20] (* Eric W. Weisstein, Jun 30 2017 *)

CoefficientList[Series[(-1 - 6 x + 9 x^2 - 4 x^3)/((-1 + x)^4 (-1 + 2 x)), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 30 2017 *)

PROG

(PARI) Vec((1+6*x-9*x^2+4*x^3)/((1-x)^4*(1-2*x))+O(x^25))

(PARI) a(n) = 18*(2^n - 1) - n*(n^2 + 9*n + 41)/3 \\ Charles R Greathouse IV, Jun 30 2017

CROSSREFS

Row 2 of A288518.

Cf. A288032, A137882, A287992, A020874.

Sequence in context: A252178 A218832 A307921 * A219153 A318404 A041274

Adjacent sequences: A288513 A288514 A288515 * A288517 A288518 A288519

KEYWORD

nonn,easy

AUTHOR

Andrew Howroyd, Jun 10 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 08:43 EDT 2023. Contains 361364 sequences. (Running on oeis4.)