login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288454
Chebyshev coefficients of density of states of square lattice.
8
1, -8, 32, -512, 4608, -73728, 819200, -13107200, 160563200, -2569011200, 33294385152, -532710162432, 7161992183808, -114591874940928, 1580900152246272, -25294402435940352, 355702534255411200, -5691240548086579200, 81223136710964019200, -1299570187375424307200, 18765793505701126995968
OFFSET
0,2
COMMENTS
This is the sequence of integers z^n g_n for n=0,2,4,6,... where g_n are the coefficients in the Chebyshev polynomial expansion of the density of states of the square lattice (z=4), g(w) = 1 / (Pi*sqrt(1-w^2)) * Sum_{n>=0} (2-delta_n) g_n T_n(w). Here |w| <= 1 and delta is the Kronecker delta.
The Chebyshev coefficients, g_n, are related to the number of walks on the lattice that return to the origin, W_n, as g_n = Sum_{k=0..n} a_{nk} z^{-k} W_k, where z is the coordination number of the lattice and a_{nk} are the coefficients of Chebyshev polynomials such that T_n(x) = Sum_{k=0..n} a_{nk} x^k.
For the square lattice (z=4), the even Chebyshev coefficients can be expressed in closed form in terms of the hypergeometric function pFq, as z^{2N} g_{2N} = (1 + delta_N) * 2^(2N-1) Binomial(2N,N)^2 * 3F2 (-N, -N, -N; 1-2N, 1/2-N; 1).
MATHEMATICA
zng[n_] := If[OddQ[n], 0, (1+KroneckerDelta[m]) 2^(2m-1) Binomial[2m, m]^2 HypergeometricPFQ[{-m, -m, -m}, {1-2m, 1/2-m}, 1] /. m->n/2];
Table[zng[n], {n, 0, 50}]
Wchain[n_] := If[OddQ[n], 0, Binomial[n, n/2]];
Wsq[n_] := Wchain[n]^2;
ank[n_, k_] := SeriesCoefficient[ChebyshevT[n, x], {x, 0, k}];
zng[n_] := Sum[ank[n, k]*4^(n - k)*Wsq[k], {k, 0, n}];
Table[zng[n], {n, 0, 50}]
CROSSREFS
Related to numbers of walks returning to origin, W_n, on square lattice (A002894).
Sequence in context: A214539 A140789 A120781 * A139286 A139306 A214594
KEYWORD
sign
AUTHOR
Yen-Lee Loh, Jun 16 2017
STATUS
approved