|
|
A288387
|
|
Number T(n,k) of Dyck paths of semilength n such that the minimal number of peaks over all positive levels equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
|
|
13
|
|
|
1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 8, 5, 0, 0, 1, 25, 13, 3, 0, 0, 1, 83, 35, 13, 0, 0, 0, 1, 282, 112, 30, 4, 0, 0, 0, 1, 971, 368, 61, 29, 0, 0, 0, 0, 1, 3386, 1208, 172, 90, 5, 0, 0, 0, 0, 1, 11940, 3992, 619, 188, 56, 0, 0, 0, 0, 0, 1, 42504, 13449, 2241, 345, 240, 6, 0, 0, 0, 0, 0, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
COMMENTS
|
T(n,k) is defined for all n,k >= 0. The triangle contains only the terms for k<=n. T(n,k) = 0 if k>n.
T(0,0) = 1 by convention.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
. T(4,1) = 5:
. /\ /\ /\/\ /\ /\/\
. /\/\/ \ /\/ \/\ /\/ \ / \/\/\ / \/\ .
.
Triangle T(n,k) begins:
: 1;
: 0, 1;
: 1, 0, 1;
: 2, 2, 0, 1;
: 8, 5, 0, 0, 1;
: 25, 13, 3, 0, 0, 1;
: 83, 35, 13, 0, 0, 0, 1;
: 282, 112, 30, 4, 0, 0, 0, 1;
: 971, 368, 61, 29, 0, 0, 0, 0, 1;
: 3386, 1208, 172, 90, 5, 0, 0, 0, 0, 1;
|
|
MAPLE
|
b:= proc(n, k, j) option remember; `if`(j=n, 1,
add(add(binomial(i, m)*binomial(j-1, i-1-m),
m=max(k, i-j)..i-1)*b(n-j, k, i), i=1..n-j))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n, k, j), j=k..n))
end:
T:= (n, k)-> `if`(n=k, 1, A(n, k)-A(n, k+1)):
seq(seq(T(n, k), k=0..n), n=0..14);
|
|
MATHEMATICA
|
b[n_, k_, j_] := b[n, k, j] = If[j==n, 1, Sum[Sum[Binomial[i, m]*Binomial[ j-1, i-1-m], {m, Max[k, i - j], i - 1}]*b[n - j, k, i], {i, 1, n - j}]];
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[b[n, k, j], {j, k, n}]];
T[n_, k_] := If[n == k, 1, A[n, k] - A[n, k + 1]];
Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)
|
|
CROSSREFS
|
Columns k=0-10 give: A288539, A288540, A288541, A288542, A288543, A288544, A288545, A288546, A288547, A288548, A288549.
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|