login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A288387 Number T(n,k) of Dyck paths of semilength n such that the minimal number of peaks over all positive levels equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 13
1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 8, 5, 0, 0, 1, 25, 13, 3, 0, 0, 1, 83, 35, 13, 0, 0, 0, 1, 282, 112, 30, 4, 0, 0, 0, 1, 971, 368, 61, 29, 0, 0, 0, 0, 1, 3386, 1208, 172, 90, 5, 0, 0, 0, 0, 1, 11940, 3992, 619, 188, 56, 0, 0, 0, 0, 0, 1, 42504, 13449, 2241, 345, 240, 6, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,7
COMMENTS
T(n,k) is defined for all n,k >= 0. The triangle contains only the terms for k<=n. T(n,k) = 0 if k>n.
T(0,0) = 1 by convention.
LINKS
FORMULA
T(0,0) = 1, T(n,k) = A288386(n,k) - A288386(n,k+1).
T(2n,n-1) = A218152(n) for n>1.
T(2n,n) = A000007(n).
T(2n+1,n) = A000027(n+1) for n>0.
EXAMPLE
. T(4,1) = 5:
. /\ /\ /\/\ /\ /\/\
. /\/\/ \ /\/ \/\ /\/ \ / \/\/\ / \/\ .
.
Triangle T(n,k) begins:
: 1;
: 0, 1;
: 1, 0, 1;
: 2, 2, 0, 1;
: 8, 5, 0, 0, 1;
: 25, 13, 3, 0, 0, 1;
: 83, 35, 13, 0, 0, 0, 1;
: 282, 112, 30, 4, 0, 0, 0, 1;
: 971, 368, 61, 29, 0, 0, 0, 0, 1;
: 3386, 1208, 172, 90, 5, 0, 0, 0, 0, 1;
MAPLE
b:= proc(n, k, j) option remember; `if`(j=n, 1,
add(add(binomial(i, m)*binomial(j-1, i-1-m),
m=max(k, i-j)..i-1)*b(n-j, k, i), i=1..n-j))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n, k, j), j=k..n))
end:
T:= (n, k)-> `if`(n=k, 1, A(n, k)-A(n, k+1)):
seq(seq(T(n, k), k=0..n), n=0..14);
MATHEMATICA
b[n_, k_, j_] := b[n, k, j] = If[j==n, 1, Sum[Sum[Binomial[i, m]*Binomial[ j-1, i-1-m], {m, Max[k, i - j], i - 1}]*b[n - j, k, i], {i, 1, n - j}]];
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[b[n, k, j], {j, k, n}]];
T[n_, k_] := If[n == k, 1, A[n, k] - A[n, k + 1]];
Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)
CROSSREFS
Row sums give A000108.
Main diagonal and first lower diagonal give: A000012, A000004.
Sequence in context: A065600 A029583 A011289 * A225678 A141720 A353449
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jun 08 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 2 23:30 EDT 2023. Contains 365841 sequences. (Running on oeis4.)