login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288170
a(n) = 3*a(n-1) - a(n-2) - 4*a(n-3) + 2*a(n-4) for n >= 4, where a(0) = 2, a(1) = 4, a(2) = 8, a(3) = 16, a(4) = 34, a(5) = 70 .
2
2, 4, 8, 16, 34, 70, 144, 292, 590, 1186, 2380, 4768, 9546, 19102, 38216, 76444, 152902, 305818, 611652, 1223320, 2446658, 4893334, 9786688, 19573396, 39146814, 78293650, 156587324, 313174672, 626349370, 1252698766, 2505397560, 5010795148, 10021590326
OFFSET
0,1
COMMENTS
Conjecture: a(n) is the number of letters (0's and 1's) in the n-th iteration of the mapping 00->0010, 1->000, starting with 00; see A288167.
FORMULA
a(n) = 3*a(n-1) - a(n-2) - 4*a(n-3) + 2*a(n-4) for n >= 4, where a(0) = 2, a(1) = 4, a(2) = 8, a(3) = 16, a(4) = 34, a(5) = 70 .
G.f.: 2 + (2*x*(-2 + 2*x + 2*x^2 - 3*x^3))/((-1 + x)^2*(-1 + x + 2*x^2)).
a(n) = (3 + (-1)^n + 7*2^(1+n) - 6*n) / 6 for n>0. - Colin Barker, Sep 29 2017
MATHEMATICA
Join[{2}, LinearRecurrence[{3, -1, -3, 2}, {4, 8, 16, 34}, 40]]
PROG
(PARI) Vec(2*(1 - x - x^2 + x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 - 2*x)) + O(x^30)) \\ Colin Barker, Sep 29 2017
CROSSREFS
Cf. A288167.
Sequence in context: A275545 A273972 A275443 * A088325 A215930 A367660
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 07 2017
STATUS
approved