OFFSET
0,1
COMMENTS
Conjecture: a(n) is the number of letters (0's and 1's) in the n-th iteration of the mapping 00->0010, 1->000, starting with 00; see A288167.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..2000
Index entries for linear recurrences with constant coefficients, signature (3, -1, -3, 2).
FORMULA
a(n) = 3*a(n-1) - a(n-2) - 4*a(n-3) + 2*a(n-4) for n >= 4, where a(0) = 2, a(1) = 4, a(2) = 8, a(3) = 16, a(4) = 34, a(5) = 70 .
G.f.: 2 + (2*x*(-2 + 2*x + 2*x^2 - 3*x^3))/((-1 + x)^2*(-1 + x + 2*x^2)).
a(n) = (3 + (-1)^n + 7*2^(1+n) - 6*n) / 6 for n>0. - Colin Barker, Sep 29 2017
MATHEMATICA
Join[{2}, LinearRecurrence[{3, -1, -3, 2}, {4, 8, 16, 34}, 40]]
PROG
(PARI) Vec(2*(1 - x - x^2 + x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 - 2*x)) + O(x^30)) \\ Colin Barker, Sep 29 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 07 2017
STATUS
approved