login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275443 Sum of the asymmetry degrees of all compositions of n without 2's. 2
0, 0, 0, 0, 2, 4, 8, 16, 34, 68, 134, 260, 502, 960, 1824, 3444, 6472, 12108, 22566, 41912, 77608, 143312, 263990, 485196, 889938, 1629256, 2977642, 5433344, 9899776, 18013288, 32734928, 59417944, 107732106, 195130092, 353087560, 638329168, 1153012298 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
The asymmetry degree of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the asymmetry degree of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).
A sequence is palindromic if and only if its asymmetry degree is 0.
REFERENCES
S. Heubach and T. Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
LINKS
P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003.
V. E. Hoggatt, Jr., and Marjorie Bicknell, Palindromic compositions, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.
FORMULA
G.f.: g(z) = 2z^4*(1-z)/((1+z)(1-2z+z^2-z^3)^2). In the more general situation of compositions into a[1]<a[2]<a[3]<..., denoting F(z) = Sum(z^{a[j]},j>=1}, we have g(z) = (F(z)^2 - F(z^2))/((1+F(z))(1-F(z))^2).
a(n) = Sum_{k >= 0} k*A275442(n,k).
EXAMPLE
a(5) = 4 because the compositions of 5 without 2's are 5, 41, 14, 311, 131, 113, and 11111 and the sum of their asymmetry degrees is 0+1+1+1+0+1+0=4.
MAPLE
g := 2*z^4*(1-z)/((1+z)*(1-2*z+z^2-z^3)^2): gser := series(g, z = 0, 45): seq(coeff(gser, z, n), n = 0 .. 40);
MATHEMATICA
Table[Total@ Map[Total, Map[Map[Boole[# >= 1] &, BitXor[Take[# - 1, Ceiling[Length[#]/2]], Reverse@ Take[# - 1, -Ceiling[Length[#]/2]]]] &, Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {___, a_, ___} /; a == 2]], 1]]], {n, 0, 25}] // Flatten (* Michael De Vlieger, Aug 17 2016 *)
PROG
(PARI) concat(vector(4), Vec(2*x^4*(1-x)/((1+x)*(1-2*x+x^2-x^3)^2) + O(x^50))) \\ Colin Barker, Aug 29 2016
CROSSREFS
Sequence in context: A210541 A275545 A273972 * A288170 A088325 A215930
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 16 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 23:59 EDT 2024. Contains 375984 sequences. (Running on oeis4.)