|
|
A275443
|
|
Sum of the asymmetry degrees of all compositions of n without 2's.
|
|
2
|
|
|
0, 0, 0, 0, 2, 4, 8, 16, 34, 68, 134, 260, 502, 960, 1824, 3444, 6472, 12108, 22566, 41912, 77608, 143312, 263990, 485196, 889938, 1629256, 2977642, 5433344, 9899776, 18013288, 32734928, 59417944, 107732106, 195130092, 353087560, 638329168, 1153012298
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
The asymmetry degree of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the asymmetry degree of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).
A sequence is palindromic if and only if its asymmetry degree is 0.
|
|
REFERENCES
|
S. Heubach and T. Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: g(z) = 2z^4*(1-z)/((1+z)(1-2z+z^2-z^3)^2). In the more general situation of compositions into a[1]<a[2]<a[3]<..., denoting F(z) = Sum(z^{a[j]},j>=1}, we have g(z) = (F(z)^2 - F(z^2))/((1+F(z))(1-F(z))^2).
a(n) = Sum_{k >= 0} k*A275442(n,k).
|
|
EXAMPLE
|
a(5) = 4 because the compositions of 5 without 2's are 5, 41, 14, 311, 131, 113, and 11111 and the sum of their asymmetry degrees is 0+1+1+1+0+1+0=4.
|
|
MAPLE
|
g := 2*z^4*(1-z)/((1+z)*(1-2*z+z^2-z^3)^2): gser := series(g, z = 0, 45): seq(coeff(gser, z, n), n = 0 .. 40);
|
|
MATHEMATICA
|
Table[Total@ Map[Total, Map[Map[Boole[# >= 1] &, BitXor[Take[# - 1, Ceiling[Length[#]/2]], Reverse@ Take[# - 1, -Ceiling[Length[#]/2]]]] &, Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {___, a_, ___} /; a == 2]], 1]]], {n, 0, 25}] // Flatten (* Michael De Vlieger, Aug 17 2016 *)
|
|
PROG
|
(PARI) concat(vector(4), Vec(2*x^4*(1-x)/((1+x)*(1-2*x+x^2-x^3)^2) + O(x^50))) \\ Colin Barker, Aug 29 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|