login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A037276.
2

%I #17 May 09 2021 07:55:53

%S 1,3,6,28,33,56,63,285,318,343,354,577,590,617,652,2874,2891,3124,

%T 3143,3368,3405,3616,3639,5862,5917,6130,6463,6690,6719,6954,6985,

%U 29207,29518,29735,29792,32025,32062,32281,32594,34819,34860,35097,35140,37351,37686,37909,37956,60179,60256,60511

%N Partial sums of A037276.

%H N. J. A. Sloane, <a href="/A287883/b287883.txt">Table of n, a(n) for n = 1..20000</a>

%t co[n_, k_] := Nest[Flatten[IntegerDigits[{#, n}]] &, n, k - 1]; A037276 =

%t Table[FromDigits[Flatten[IntegerDigits[co @@@ FactorInteger[n]]]], {n, 50}]; Table[Sum[A037276[[k]], {k, 1, n}], {n, 1, 25}] (* _G. C. Greubel_, Jun 23 2017 *)

%o (Python)

%o from sympy import factorint

%o def a037276(n):

%o f=factorint(n)

%o l=sorted([i for i in f])

%o return 1 if n==1 else int("".join(str(i)*f[i] for i in l))

%o l=[0, 1]

%o for n in range(2, 101): l.append(l[n - 1] + a037276(n))

%o print(l[1:]) # _Indranil Ghosh_, Jun 23 2017

%Y Cf. A037276.

%K nonn,base

%O 1,2

%A _N. J. A. Sloane_, Jun 20 2017