login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of set partitions of [n] such that j is member of block b only if b = 1 or at least one of j-1, ..., j-7 is member of a block >= b-1.
2

%I #9 May 27 2018 10:33:25

%S 1,1,2,5,15,52,203,877,4140,21147,115974,678434,4209827,27578206,

%T 189954361,1370870811,10334533723,81166980407,662588540048,

%U 5610196619724,49177794178940,445536788068643,4165402700226511,40131393651398259,397935154986242021

%N Number of set partitions of [n] such that j is member of block b only if b = 1 or at least one of j-1, ..., j-7 is member of a block >= b-1.

%H Alois P. Heinz, <a href="/A287670/b287670.txt">Table of n, a(n) for n = 0..37</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%F a(n) = A287641(n,7).

%F a(n) = A000110(n) for n <= 9.

%e a(10) = 115974 = 115975 - 1 = A000110(10) - 1 counts all set partitions of [10] except: 13456789|2|(10).

%p b:= proc(n, l) option remember; `if`(n=0, 1, add(b(n-1,

%p [seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1))

%p end:

%p a:= n-> b(n, [0$7]):

%p seq(a(n), n=0..20);

%t b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[b[n - 1, Append[Table[Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]];

%t a[n_] := b[n, Table[0, 7]];

%t Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, May 27 2018, from Maple *)

%Y Column k=7 of A287641.

%Y Cf. A000110.

%K nonn

%O 0,3

%A _Alois P. Heinz_, May 29 2017