login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287670
Number of set partitions of [n] such that j is member of block b only if b = 1 or at least one of j-1, ..., j-7 is member of a block >= b-1.
2
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115974, 678434, 4209827, 27578206, 189954361, 1370870811, 10334533723, 81166980407, 662588540048, 5610196619724, 49177794178940, 445536788068643, 4165402700226511, 40131393651398259, 397935154986242021
OFFSET
0,3
LINKS
FORMULA
a(n) = A287641(n,7).
a(n) = A000110(n) for n <= 9.
EXAMPLE
a(10) = 115974 = 115975 - 1 = A000110(10) - 1 counts all set partitions of [10] except: 13456789|2|(10).
MAPLE
b:= proc(n, l) option remember; `if`(n=0, 1, add(b(n-1,
[seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1))
end:
a:= n-> b(n, [0$7]):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[b[n - 1, Append[Table[Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]];
a[n_] := b[n, Table[0, 7]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 27 2018, from Maple *)
CROSSREFS
Column k=7 of A287641.
Cf. A000110.
Sequence in context: A287587 A287280 A287258 * A164863 A192126 A229226
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 29 2017
STATUS
approved